11 research outputs found

    Quantum folded string and integrability: from finite size effects to Konishi dimension

    Get PDF
    Using the algebraic curve approach we one-loop quantize the folded string solution for the type IIB superstring in AdS(5)xS(5). We obtain an explicit result valid for arbitrary values of its Lorentz spin S and R-charge J in terms of integrals of elliptic functions. Then we consider the limit S ~ J ~ 1 and derive the leading three coefficients of strong coupling expansion of short operators. Notably, our result evaluated for the anomalous dimension of the Konishi state gives 2\lambda^{1/4}-4+2/\lambda^{1/4}. This reproduces correctly the values predicted numerically in arXiv:0906.4240. Furthermore we compare our result using some new numerical data from the Y-system for another similar state. We also revisited some of the large S computations using our methods. In particular, we derive finite--size corrections to the anomalous dimension of operators with small J in this limit.Comment: 20 pages, 1 figure; v2: references added, typos corrected; v3: major improvement of the references; v4: Discussion of short operators is restricted to the case n=1. This restriction does not affect the main results of the pape

    TBA-like equations and Casimir effect in (non-)perturbative AdS/CFT

    Full text link
    We consider high spin, ss, long twist, LL, planar operators (asymptotic Bethe Ansatz) of strong N=4{\cal N}=4 SYM. Precisely, we compute the minimal anomalous dimensions for large 't Hooft coupling λ\lambda to the lowest order of the (string) scaling variable L/(lnSλ)\ell \sim L/ (\ln \mathcal{S} \sqrt{\lambda}) with GKP string size lnS2ln(s/λ)\sim\ln \mathcal{S}\equiv 2 \ln (s/\sqrt{\lambda}). At the leading order (lnS)2(\ln \mathcal{S}) \cdot \ell ^2 , we can confirm the O(6) non-linear sigma model description for this bulk term, without boundary term (lnS)0(\ln \mathcal{S})^0. Going further, we derive, extending the O(6) regime, the exact effect of the size finiteness. In particular, we compute, at all loops, the first Casimir correction 0/lnS\ell ^0/\ln \mathcal{S} (in terms of the infinite size O(6) NLSM), which reveals only one massless mode (out of five), as predictable once the O(6) description has been extended. Consequently, upon comparing with string theory expansion, at one loop our findings agree for large twist, while reveal for negligible twist, already at this order, the appearance of wrapping. At two loops, as well as for next loops and orders, we can produce predictions, which may guide future string computations.Comment: Version 2 with: new exact expression for the Casimir energy derived (beyond the first two loops of the previous version); UV theory formulated and analysed extensively in the Appendix C; origin of the O(6) NLSM scattering clarified; typos correct and references adde

    Integrable Wilson loops

    Get PDF
    The generalized quark-antiquark potential of N=4 supersymmetric Yang-Mills theory on S^3 x R calculates the potential between a pair of heavy charged particles separated by an arbitrary angle on S^3 and also an angle in flavor space. It can be calculated by a Wilson loop following a prescribed path and couplings, or after a conformal transformation, by a cusped Wilson loop in flat space, hence also generalizing the usual concept of the cusp anomalous dimension. In AdS_5 x S^5 this is calculated by an infinite open string. I present here an open spin-chain model which calculates the spectrum of excitations of such open strings. In the dual gauge theory these are cusped Wilson loops with extra operator insertions at the cusp. The boundaries of the spin-chain introduce a non-trivial reflection phase and break the bulk symmetry down to a single copy of psu(2|2). The dependence on the two angles is captured by the two embeddings of this algebra into \psu(2|2)^2, i.e., by a global rotation. The exact answer to this problem is conjectured to be given by solutions to a set of twisted boundary thermodynamic Bethe ansatz integral equations. In particular the generalized quark-antiquark potential or cusp anomalous dimension is recovered by calculating the ground state energy of the minimal length spin-chain, with no sites. It gets contributions only from virtual particles reflecting off the boundaries. I reproduce from this calculation some known weak coupling perturtbative results.Comment: 40 pages, 11 figures; v2-some formulas corrected, results unchange

    Structure constants in N \mathcal{N} = 4 SYM at finite coupling as worldsheet g-function

    No full text
    corecore