70 research outputs found

    Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns

    Get PDF
    Self-assembled DNA nanostructures enable nanometre-precise patterning that can be used to create programmable molecular machines and arrays of functional materials. DNA origami is particularly versatile in this context because each DNA strand in the origami nanostructure occupies a unique position and can serve as a uniquely addressable pixel. However, the scale of such structures has been limited to about 0.05 square micrometres, hindering applications that demand a larger layout and integration with more conventional patterning methods. Hierarchical multistage assembly of simple sets of tiles can in principle overcome this limitation, but so far has not been sufficiently robust to enable successful implementation of larger structures using DNA origami tiles. Here we show that by using simple local assembly rules that are modified and applied recursively throughout a hierarchical, multistage assembly process, a small and constant set of unique DNA strands can be used to create DNA origami arrays of increasing size and with arbitrary patterns. We illustrate this method, which we term ‘fractal assembly’, by producing DNA origami arrays with sizes of up to 0.5 square micrometres and with up to 8,704 pixels, allowing us to render images such as the Mona Lisa and a rooster. We find that self-assembly of the tiles into arrays is unaffected by changes in surface patterns on the tiles, and that the yield of the fractal assembly process corresponds to about 0.95^(m − 1) for arrays containing m tiles. When used in conjunction with a software tool that we developed that converts an arbitrary pattern into DNA sequences and experimental protocols, our assembly method is readily accessible and will facilitate the construction of sophisticated materials and devices with sizes similar to that of a bacterium using DNA nanostructures

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Study of the effect of pressure gradient on compressible laminar large boundary layers at large prandtl numbers

    No full text
    An analytical study of the asymptotic behaviour compressible laminar similar boundary layers with preag zadient has been made in this note for larg e Prandtl A sort of hybrid technique which essentially involves -cne use of the method of matched asymptotic expansions for the energy equation and Meksyn' s method for the momentum equation has been made use of in order to solve the coupled momentum and energy equations. Also, exact numerical solutions have been obtained for Prandtl numbers upto thirty and for a pressure gradient parameter .1? = 0.2, for the heat transfer as well as the plate insulated cases by the Newton-Raphson's technique

    Numerical solutions of the compressible, laminar boundary layers with pressure gradients at large pfandtl numbers

    No full text
    Some numerical solutions of the compressible laminar boundary layers in a pressure gradient are presented for a range of Prandtl numbers from 1 to 30 for the wall insulated and cooled wall (g = 0.2) cases for a typical pressure gradient parameter, 3.= '0.2. amp; 'hump-hollow' behaviour in the enthalpy profile was observed for the cooled wall Case with increase in Prandtl number. Systematic Computer experiments on the effect of various parameters on the enthalpy profile showed that this behaviour was primarily a large Prandtl number phenomenon
    corecore