446 research outputs found

    Principles and components of a strategic EPM process relevant to the peri-urban interface (PUI)

    Get PDF
    In the first instance the concern of this paper is with inquiring, as stated in the title of the paper, into principles and components of a strategic environmental planning and management (EPM) process relevant to the PUI. The research focuses attention in particular on the problems and needs of the poor living at the interface

    An investigation of the factor-analytic approach to the determination of abilities involved in psychomotor learning

    Get PDF
    This research began with an attempt to solve a practical problem, namely, the prediction of the rate at which an operator will learn a task. From a review of the literature, communications with researchers in this area and the study of psychomotor learning in factories it was concluded that a more fundamental approach was required which included the development of a task taxonomy. This latter objective had been researched for over twenty years by E. A. Fleishman and his approach was adopted. Three studies were carried out to develop and extend Fleishman's approach to the industrial area. However, the results of these studies were not in accord with FIeishman's conclusions and suggested that a critical re-assessment was required of the arguments, methods and procedures used by Fleishman and his co-workers. It was concluded that Fleishman's findings were to some extent an artifact of the approximate methods and procedures which he used in the original factor analyses and that using the more modern computerised factor analytic methods a reliable ability taxonomy could be developed to describe the abilities involved in the learning of psychomotor tasks. The implications for a changing-task or changing-subject model were drawn and it was concluded that a changing task and subject model needs to be developed

    Super Ball Bot - Structures for Planetary Landing and Exploration, NIAC Phase 2 Final Report

    Get PDF
    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals. Ideally teams of small, collapsible, light weight robots, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such robots will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing lightweight conventional robots is difficult with current technology. Current robot designs are delicate, requiring a complex combination of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we are developing a radically different robot based on a "tensegrity" structure and built purely with tensile and compression elements. Such robots can be both a landing and a mobility platform allowing for dramatically simpler mission profile and reduced costs. These multi-purpose robots can be light-weight, compactly stored and deployed, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and can provide surface mobility. These properties allow for unique mission profiles that can be carried out with low cost and high reliability and which minimizes the inefficient dependance on "use once and discard" mass associated with traditional landing systems. We believe tensegrity robot technology can play a critical role in future planetary exploration

    Super Ball Bot - Structures for Planetary Landing and Exploration

    Get PDF
    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals for our solar system. Ideally teams of dozens or even hundreds of small, collapsable robots, weighing only a few kilograms a piece, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such teams will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing many lightweight conventional robots is difficult with conventional technology. Current robot designs are delicate, requiring combinations of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we propose to develop a radically different robot based on a "tensegrity" built purely upon tensile and compression elements. These robots can be light-weight, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and are easy to collapse and uncollapse. We believe tensegrity robot technology can play a critical role in future planetary exploration

    Emergency Department Crowding: Time for Interventions and Policy Evaluations

    Get PDF
    This paper summarises the consequences of emergency department crowding. It provides a comparison of the scales used to measure emergency department crowding. We discuss the multiple causes of crowding and present an up-to-date literature review of the interventions that reduce the adverse consequences of crowding. We consider interventions at the level of an individual hospital and a policy level

    Financial capability, money attitudes and socioeconomic status: risks for experiencing adverse financial events

    Get PDF
    The risk of experiencing adverse financial events (e.g. bankruptcy) depends on the world economy and on individual differences in financial and psychological variables. Analysing data from 109,472 British survey respondents, this study reports the risks associated with financial capabilities, money attitudes, and socio-economic status for suffering negative financial outcomes. The results show that (1) socio-economic status is associated with financial capabilities but not with money attitudes; (2) money attitudes and financial capabilities are largely independent; (3) money attitudes and financial capabilities each contribute independently to the risk of experiencing adverse financial outcomes, even after adjusting for socio-economic status; and (4) financial capabilities are greater risk factors of adverse financial outcomes than money attitudes; the latter, however, are likely to be promising targets for interventions

    Data-Intensive architecture for scientific knowledge discovery

    Get PDF
    This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology
    corecore