136 research outputs found

    SHH1, a Homeodomain Protein Required for DNA Methylation, As Well As RDR2, RDM4, and Chromatin Remodeling Factors, Associate with RNA Polymerase IV

    Get PDF
    DNA methylation is an evolutionarily conserved epigenetic modification that is critical for gene silencing and the maintenance of genome integrity. In Arabidopsis thaliana, the de novo DNA methyltransferase, DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), is targeted to specific genomic loci by 24 nt small interfering RNAs (siRNAs) through a pathway termed RNA–directed DNA methylation (RdDM). Biogenesis of the targeting siRNAs is thought to be initiated by the activity of the plant-specific RNA polymerase IV (Pol-IV). However, the mechanism through which Pol-IV is targeted to specific genomic loci and whether factors other than the core Pol-IV machinery are required for Pol-IV activity remain unknown. Through the affinity purification of NUCLEAR RNA POLYMERASE D1 (NRPD1), the largest subunit of the Pol-IV polymerase, we found that several previously identified RdDM components co-purify with Pol-IV, namely RNA–DEPENDENT RNA POLYMERASE 2 (RDR2), CLASSY1 (CLSY1), and RNA–DIRECTED DNA METHYLATION 4 (RDM4), suggesting that the upstream siRNA generating portion of the RdDM pathway may be more physically coupled than previously envisioned. A homeodomain protein, SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1), was also found to co-purify with NRPD1; and we demonstrate that SHH1 is required for de novo and maintenance DNA methylation, as well as for the accumulation of siRNAs at specific loci, confirming it is a bonafide component of the RdDM pathway

    Small RNAs Prevent Transcription-Coupled Loss of Histone H3 Lysine 9 Methylation in Arabidopsis thaliana

    Get PDF
    In eukaryotes, histone H3 lysine 9 methylation (H3K9me) mediates silencing of invasive sequences to prevent deleterious consequences including the expression of aberrant gene products and mobilization of transposons. In Arabidopsis thaliana, H3K9me maintained by SUVH histone methyltransferases (MTases) is associated with cytosine methylation (5meC) maintained by the CMT3 cytosine MTase. The SUVHs contain a 5meC binding domain and CMT3 contains an H3K9me binding domain, suggesting that the SUVH/CMT3 pathway involves an amplification loop between H3K9me and 5meC. However, at loci subject to read-through transcription, the stability of the H3K9me/5meC loop requires a mechanism to counteract transcription-coupled loss of H3K9me. Here we use the duplicated PAI genes, which stably maintain SUVH-dependent H3K9me and CMT3-dependent 5meC despite read-through transcription, to show that when PAI sRNAs are depleted by dicer ribonuclease mutations, PAI H3K9me and 5meC levels are reduced and remaining PAI 5meC is destabilized upon inbreeding. The dicer mutations confer weaker reductions in PAI 5meC levels but similar or stronger reductions in PAI H3K9me levels compared to a cmt3 mutation. This comparison indicates a connection between sRNAs and maintenance of H3K9me independent of CMT3 function. The dicer mutations reduce PAI H3K9me and 5meC levels through a distinct mechanism from the known role of dicer-dependent sRNAs in guiding the DRM2 cytosine MTase because the PAI genes maintain H3K9me and 5meC at levels similar to wild type in a drm2 mutant. Our results support a new role for sRNAs in plants to prevent transcription-coupled loss of H3K9me

    Decision-Making and Depressive Symptomatology

    Get PDF
    Difficulty making decisions is a core symptom of depressive illness, but the nature of these difficulties has not been well characterized. The two studies presented herein use the same hypothetical scenarios that call for a decision. In Study 1, participants were asked to make and explain their decisions in a free-response format, as well as to describe their prior experiences with similar situations. The results suggest that those with more depressive symptoms make decisions that are less likely to further their interests. We also identified several interesting associations between features of decision-making and the presence of depressive symptoms. In Study 2, participants were guided through their decisions with simple decision tools to investigate whether the association between depressive symptoms and poor decisions is better accounted for by failure to use of good decision-making strategies, or by other factors, such as differences in priorities or goals. With this minimal intervention the quality of decisions no longer declined significantly as a function of depressive symptom severity. Moreover, few associations between depressive symptom severity and decision-related goals and priorities were evident, suggesting that the previously-exposed difficulties of depressed individuals with decision-making were largely the result of their failure to use effective decision-making techniques

    Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription

    Get PDF
    Abstract Background RNA-directed DNA methylation (RdDM) is a plant-specific epigenetic process that relies on the RNA polymerase IV (Pol IV) for the production of 24 nucleotide small interfering RNAs (siRNA) that guide the cytosine methylation and silencing of genes and transposons. Zea mays RPD1/RMR6 gene encodes the largest subunit of Pol IV and is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs) and transcriptional regulation of specific alleles. Results In this study we applied a total RNA-Seq approach to compare the B73 and rpd1/rmr6 leaf transcriptomes. Although previous studies indicated that loss of siRNAs production in RdDM mutants provokes a strong loss of CHH DNA methylation but not massive gene or TEs transcriptional activation in both Arabidopsis and maize, our total RNA-Seq analysis of rpd1/rmr6 transcriptome reveals that loss of Pol IV activity causes a global increase in the transcribed fraction of the maize genome. Our results point to the genes with nearby TE insertions as being the most strongly affected by Pol IV-mediated gene silencing. TEs modulation of nearby gene expression is linked to alternative methylation profiles on gene flanking regions, and these profiles are strictly dependent on specific characteristics of the TE member inserted. Although Pol IV is essential for the biogenesis of siRNAs, the genes with associated siRNA loci are less affected by the pol IV mutation. Conclusions This deep and integrated analysis of gene expression, TEs distribution, smallRNA targeting and DNA methylation levels, reveals that loss of Pol IV activity globally affects genome regulation, pointing at TEs as modulator of nearby gene expression and indicating the existence of multiple level epigenetic silencing mechanisms. Our results also suggest a predominant role of the Pol IV-mediated RdDM pathway in genome dominance regulation, and subgenome stability and evolution in maize

    Time-Dependent Subcellular Distribution and Effects of Carbon Nanotubes in Lungs of Mice

    Get PDF
    BACKGROUND AND METHODS:Pulmonary deposited carbon nanotubes (CNTs) are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice: one short (850 nm) and tangled, and two longer (4 μm and 5.7 μm) and thicker. We assessed the cellular interaction with these CNTs using transmission electron microscopy (TEM) 1, 3 and 28 days after instillation. RESULTS:TEM analysis revealed that the three CNTs followed the same overall progression pattern over time. Initially, CNTs were taken up either by a diffusion mechanism or via endocytosis. Then CNTs were agglomerated in vesicles in macrophages. Lastly, at 28 days post-exposure, evidence suggesting CNT escape from vesicle enclosures were found. The longer and thicker CNTs more often perturbed and escaped vesicular enclosures in macrophages compared to the smaller CNTs. Bronchoalveolar lavage (BAL) showed that the CNT exposure induced both an eosinophil influx and also eosinophilic crystalline pneumonia. CONCLUSION:Two very different types of multiwalled CNTs had very similar pattern of cellular interactions in lung tissue, with the longer and thicker CNTs resulting in more severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP)

    Knee-clicks and visual traits indicate fighting ability in eland antelopes: multiple messages and back-up signals

    Get PDF
    Abstract Background Given the costs of signalling, why do males often advertise their fighting ability to rivals using several signals rather than just one? Multiple signalling theories have developed largely in studies of sexual signals, and less is known about their applicability to intra-sexual communication. We here investigate the evolutionary basis for the intricate agonistic signalling system in eland antelopes, paying particular attention to the evolutionary phenomenon of loud knee-clicking. Results A principal components analysis separated seven male traits into three groups. The dominant frequency of the knee-clicking sound honestly indicated body size, a main determinant of fighting ability. In contrast, the dewlap size increased with estimated age rather than body size, suggesting that, by magnifying the silhouette of older bulls disproportionately, the dewlap acts as an indicator of age-related traits such as fighting experience. Facemask darkness, frontal hairbrush size and body greyness aligned with a third underlying variable, presumed to be androgen-related aggression. A longitudinal study provided independent support of these findings. Conclusion The results show that the multiple agonistic signals in eland reflect three separate components of fighting ability: (1) body size, (2) age and (3) presumably androgen-related aggression, which is reflected in three backup signals. The study highlights how complex agonistic signalling systems can evolve through the simultaneous action of several selective forces, each of which favours multiple signals. Specifically, loud knee-clicking is discovered to be an honest signal of body size, providing an exceptional example of the potential for non-vocal acoustic communication in mammals.</p

    Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato

    Get PDF
    Phenylpropanoids comprise an important class of plant secondary metabolites. A number of transcription factors have been used to upregulate-specific branches of phenylpropanoid metabolism, but by far the most effective has been the fruit-specific expression of AtMYB12 in tomato, which resulted in as much as 10% of fruit dry weight accumulating as flavonols and hydroxycinnamates. We show that AtMYB12 not only increases the demand of flavonoid biosynthesis but also increases the supply of carbon from primary metabolism, energy and reducing power, which may fuel the shikimate and phenylalanine biosynthetic pathways to supply more aromatic amino acids for secondary metabolism. AtMYB12 directly binds promoters of genes encoding enzymes of primary metabolism. The enhanced supply of precursors, energy and reducing power achieved by AtMYB12 expression can be harnessed to engineer high levels of novel phenylpropanoids in tomato fruit, offering an effective production system for bioactives and other high value ingredients
    corecore