4,724 research outputs found

    Anxiety: An Evolutionary Approach

    Get PDF
    Anxiety disorders are among the most common mental illnesses, with huge attendant suffering. Current treatments are not universally effective, suggesting that a deeper understanding of the causes of anxiety is needed. To understand anxiety disorders better, it is first necessary to understand the normal anxiety response. This entails considering its evolutionary function as well as the mechanisms underlying it. We argue that the function of the human anxiety response, and homologues in other species, is to prepare the individual to detect and deal with threats. We use a signal detection framework to show that the threshold for expressing the anxiety response ought to vary with the probability of threats occurring, and the individual's vulnerability to them if they do occur. These predictions are consistent with major patterns in the epidemiology of anxiety. Implications for research and treatment are discussed

    Evaluation of Noise Pollution and Effects on Workers during Wheat Processing

    Get PDF
    This study assessed the intensity and likely effects of noise on workers during wheat processing. Noise measurements were taken using HD600 sound level meter. Subjective assessment of the effects of noise was undertaken using semi structured questionnaire. Also audiometric test was conducted on workers using AD229e diagnostic audiometer. The results of the study show that during wheat processing operations, the noise level in the factory ranges between 56.0 dB(A) and100.9 dB(A). Also, only 25.6 % of all the readings was below the specified limit of 85 dB(A). Workers are also observed to have certain forms of physiological and psychological disorders related to noise. The audiometric test results revealed that 33 % of the examined workers have defect in their left or right ear. Based on these results, WHO Class-5 hearing protector is recommended to be worn by workers in the processing sections while room acoustics should be upgraded to absorb some sounds transmitted to offices. © JASEMKeywords: Wheat processing, noise, machines, workers, audiometric examinatio

    AZD1775 Induces Toxicity Through Double-Stranded DNA Breaks Independently of Chemotherapeutic Agents in p53-Mutated Colorectal Cancer Cells

    Get PDF
    AZD1775 is a small molecule WEE1 inhibitor used in combination with DNA-damaging agents to cause premature mitosis and cell death in p53-mutated cancer cells. Here we sought to determine the mechanism of action of AZD1775 in combination with chemotherapeutic agents in light of recent findings that AZD1775 can cause double-stranded DNA (DS-DNA) breaks. AZD1775 significantly improved the cytotoxicity of 5-FU in a p53-mutated colorectal cancer cell line (HT29 cells), decreasing the IC50 from 9.3 μM to 3.5 μM. Flow cytometry showed a significant increase in the mitotic marker pHH3 (3.4% vs. 56.2%) and DS-DNA break marker γH2AX (5.1% vs. 50.7%) for combination therapy compared to 5-FU alone. Combination therapy also increased the amount of caspase-3 dependent apoptosis compared to 5-FU alone (4% vs. 13%). The addition of exogenous nucleosides to combination therapy significantly rescued the increased DS-DNA breaks and caspase-3 dependent apoptosis almost to the levels of 5-FU monotherapy. In conclusion, AZD1775 enhances 5-FU cytotoxicity through increased DS-DNA breaks, not premature mitosis, in p53-mutated colorectal cancer cells. This finding is important for designers of future clinical trials when considering the optimal timing and duration of AZD1775 treatment

    Asynchrony among local communities stabilises ecosystem function of metacommunities

    Get PDF
    Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species\u27 populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales

    Reduction of circulating cholesterol and apolipoprotein levels during sepsis

    Get PDF
    Sepsis with multiple organ failure is frequently associated with a substantial decrease of cholesterol levels. This decrease of cholesterol is strongly associated with mortality suggesting a direct relation between inflammatory conditions and altered cholesterol homeostasis. The host response during sepsis is mediated by cytokines and growth factors, which are capable of influencing lipid metabolism. Conversely lipoproteins are also capable of modulating cytokine production during the inflammatory response. Therefore the decrease in circulating cholesterol levels seems to play a crucial role in the pathophysiology of sepsis. In this review the interaction between cytokines and lipid metabolism and its clinical consequences will be discussed

    Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study

    Get PDF
    Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood. Methods We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution. Results Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms). Conclusion Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve

    Quantum Simulation of Tunneling in Small Systems

    Full text link
    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution. We show that physically interesting simulations of tunneling using 2 qubits (i.e. on 4 lattice point grids) may be performed with 40 single and two-qubit gates. Approximately 70 to 140 gates are needed to see interesting tunneling dynamics in three-qubit (8 lattice point) simulations.Comment: 4 pages, 2 figure
    corecore