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Abstract Our 1997 article in IJAIED reported on a study that showed that a new
algebra curriculum with an embedded intelligent tutoring system (the Algebra
Cognitive Tutor) dramatically enhanced high-school students’ learning. The main
motivation for the study was to demonstrate that intelligent tutors that have cognitive
science research embedded in them could have real impact in schools. This study was
one of the first large-scale classroom evaluations of the integrated use of an Intelligent
Tutoring System (ITS) in high schools. A core challenge was figuring out how to
embed this new technology into a curriculum and into the existing social context of
schools. A key element of the study design was to include multiple kinds of assess-
ments, including standardized test items and items measuring complex problem solving
and use of representations. The results were powerful: BOn average the 470 students in
experimental classes outperformed students in comparison classes by 15 % on stan-
dardized tests and 100 % on tests targeting the [course] objectives.^ We suggested that
the study was evidence Bthat laboratory tutoring systems can be scaled up and made to
work, both technically and pedagogically, in real and unforgiving settings like urban
high schools.^ Since this study, many more classroom studies comparing instruction
that includes an ITS against business as usual have been conducted, often showing
advantages for the ITS-enhanced curricula. More rigorous randomized field trials are
now more commonplace, but the approach of using multiple assessments in large-scale
randomized field trials has not caught on. Cognitive task analysis will remain funda-
mental to the success of ITSs. A key remaining question for ITS is to find out how they
can be used most effectively to support open-ended problem solving, either online or
offline. Given all the recent excitement around Massive Open Online Courses
(MOOCs), it is interesting to note that our field of Artificial Intelligence in Education
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has been making huge, less recognized, progress with impact on millions of students
and with the majority of those students finishing the course!

Keywords Intelligent tutoring systems . School-based field studies . Learning science .

Cognitivemodel . Cognitive tutor

We interviewed Ken Koedinger who is the lead author on the 1997 IJAIED paper
Intelligent Tutoring Goes to School in the Big City (Koedinger et al. 1997). In this
interview, we look back, trace how the paper may have influenced subsequent work,
and discuss issues for the future as they relate to this paper.

Q) What was the main motivation for the paper?

A) A key point of that paper was to provide a demonstration of the use of an
intelligent tutoring system as part of a complete curriculum and an early attempt to
evaluate its impact on student learning outcomes. We described a year-long study
that occurred in the 1993–94 school year in three city schools in the US (Pittsburgh,
PA) and involved a high proportion of low income and low performing students.

Q) Why was this work, at the time, an important thing to do and investigate?

A) We wanted to demonstrate that intelligent tutors that have core cognitive
science research embedded in them could have real impact in schools and could
be used practically. We wanted to show that research wasn’t just scientists in arm
chairs coming up with cool ideas, but that the research could lead to something
that could make a difference.

Q) Was this the first classroom study that compared a curriculum with an
intelligent tutoring system vs. a business-as-usual control condition?

A) There had been prior field trials including use of the LISP programming tutor
with college students starting in 1984 (Anderson et al. 1989). Intelligent tutors for
high school math tutors had also been used in smaller-scale experimental com-
parisons in schools (cf., Schofield et al. 1990). So, it was definitely not the first
experimental trial in schools. There were also some other intelligent tutors being
trialed in real settings including middle schools (e.g., Lester et al. 1997), colleges
(e.g., Mitrovic 1998), medical schools (e.g., Eliot and Woolf 1996), and military
training settings (e.g., Lesgold et al. 1988). I think it is safe to say that, at the time,
is was the largest such study and the first I know of that involved a substantial
integration of an intelligent tutoring system into a full-year K12 curriculum.

Q) What was particularly challenging in undertaking this study?

A) There were lots of challenges, including hardware issues. In those days, the
Apple II series computers the schools used were just barely powerful enough to
run the tutors. The live production system that drives tutor decisions, which could
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easily respond in a blink on a smartphone today, sometimes caused noticeable
delays in producing responses to student entries. Also, classrooms were not
always prepared for the electricity demands of 30 computers. When the Apple-
donated computers arrived at the first school, the room was not ready – new
electrical circuits and outlets were needed. But, the school principal wanted to get
started right away: BWe can’t wait on the remodeling; just put extension cords
down the hallways into the computer lab so we can get going.^ This statement
represents the enthusiasm we had from that school’s administration to try some-
thing new. But, it also represents a challenge of the time – hardware limitations –
that is greatly reduced today.

Another core challenge was figuring out how to embed this new technology into the
existing social context of schools, that is, into the instructional practices teachers were
already using. A big theme of the Algebra tutor curriculum for the Pittsburgh Urban
Mathematics Project, PUMP, as it was called at the time, was to work with teachers to
understand how to integrate technology with classroom instruction. We took the strong
position that we would redesign the whole course from the bottom up including
replacements for the textbook, new kinds of assessments, use of collaborative learning
in the classroom portion of the curriculum, and new teaching approaches. We evolved
to the point where we recommended use of non-technology text materials (on paper and
unbound) and practices in the regular classroom for 3 days a week and use of the tutor
in the computer lab during the other 2 days a week. We did not have quite enough tutor
material to reach this goal in this first study, but it was soon to come. Integration of the
tutor technology with other teaching practices was an important goal of this study.
This goal was a consequence of the struggles I had felt in a classroom trial with
ANGLE, my geometry proof tutor (Koedinger and Anderson 1990). In that work, I
experienced difficulties in trying to integrate the tutor into a pre-existing textbook
curriculum.

Q) So a key driver of this approach was integration into the school, into the
classroom, and into a curriculum. I’ll come back to that as we discuss the
contemporary relevance of this work. Another interesting aspect of this study
was that student learning outcomes were measured both with standardized test
items and test items focused on representations and problem solving. The latter
types of items were not so typical of standardized tests at the time and maybe not
even of standardized tests today. To what extent has that aspect (i.e., using
different types of test items, including items from standardized tests, to measure
learning outcomes) been influential? Do you think it has been appropriately
influential?

A) That’s a great question! I find today’s debate around assessment to be too
black and white: Some people are for standardized assessment and some people
are against it. What we did is to follow Ann Brown’s suggestion (Brown 1992) to
use multiple kinds of assessment, both standardized tests and tests that we
designed to best reflect the curriculum goals of achieving a more practical and
general understanding of algebra. We continue to debate over standardized
assessments versus open-ended assessments. A quite reasonable response to that
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debate is to include both kinds of assessments. Unfortunately, this idea
has not caught on in practice. In fact, my biggest frustration with what I
think is otherwise a great idea, namely, the US Department of Education’s
major push for more randomized field trials, is that their What Works
Clearinghouse (w-w-c.org) stuck to using single standardized tests as their
only outcome measure. Using just one standardized assessment measure is
not only potentially limited in terms of validity (i.e., multiple choice
responses may not well measure the real thinking and performance we
want students to achieve), but is also limited in that a single assessment is
likely to miss (or underestimate) all of the learning that may be resulting
from an intervention.

Q) You have mentioned a practical motivation, that is, to see if cognitive science
could have a real influence on education. What do you see as a specific
intellectual contribution and maybe you could also comment on whether that
was misunderstood or lost along the way?

A) Certainly, there have been a lot of papers about cognitive tutors and model
tracing intelligent tutoring systems. This paper contributed to that general liter-
ature. But what set it apart was that it addressed the social context of use,
discussed how to connect a tutoring system with a curriculum and how to
connect it with teachers. Another key part of the goal of that project and an
important part of the work’s impact was our investigation into interrelationships
between isolated symbolic math procedures, real world problem solving, and
students’ interest in and motivation to learn math. I think it is fair to say that the
paper stood out at the time as representing the AI in Education field – that the
kind of work all of us had been doing could have significant and measurable
impact on student learning outcomes. But, more importantly, it helped to press
the field forward intellectually in the sense of setting an example for how others
might try to measure the impact of their technologies on student learning
outcomes.

Q) Now 18 years later, this paper is the most highly cited paper in the history of
the journal. Is that a surprise to you? You may of course plead the fifth!

A) (laughing) Well I guess those stats first came out a number of years ago, so the
first time I heard it, I was definitely surprised and pleased! That it remains in that
position is a great honor.

Q) At the time, did you feel that this was a big step for the field to do this study?
Of course, the outcomes were unknown before it was run.

A) I don’t know, I think that, like many young researchers, I was pretty head
down in trying to get the job done. I was certainly passionate about the project
and had a strong bias to believe it would work. You know, it is interesting to
reflect on the naïve enthusiasm that comes from a young researcher. This study
was not the most rigorous experimental study ever run. It was a quasi-experiment
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that did not involve random assignment of students or even classrooms to
condition. Nevertheless, because there were not many evaluations at the time,
fewer in real classrooms, and none of this size, this study stood out. But, to get
back to that point of naïve enthusiasm, what I was getting at was that it probably
had more of a marketing character than what a senior rigorous scientist might
produce. It was really pitching a strong argument for the effectiveness of that
system, which in retrospect, went beyond the quality of design of that particular
study. Nevertheless, it was useful for the field in terms of inspiring people to push
forward to try to do these kinds of evaluations. The rigorous randomized field
trial evaluations that have since been done (e.g., Ritter et al. 2007a, b; Pane et al.
2014) were completely appropriate (except for the limitation to a single post
assessment) and have, for the most part, validated the impact of the approach.

Q) Following up from that last comment, in recent years we have seen multiple
meta-reviews in ITS and AIED, interestingly by researchers who aren’t always
closely associated with our research community. In summarizing the literature, I
would argue that by now, many high-quality studies and meta-reviews
(Steenbergen-Hu and Cooper 2013, 2014; Ma et al. 2014; VanLehn 2011; Pane
et al. 2014; Kulik and Fletcher 2015) confirm the value of intelligent tutoring
systems, perhaps with smaller effects than we might hope to see or that we have
seen in some earlier studies. That confirmation seems to me one way (though
definitely not the only way) in which this line of work has continued through the
years. Any thoughts?

A) Well yeah, lots of thoughts, but one in particular is that I think we have
become more nuanced about what an evaluation study is and I think we need to
become even more nuanced about it. For instance, some studies funded by the
Dept. of Education in the US or reported in What Works Clearinghouse (w-w-
c.org), are really policy-level experiments (e.g., Pane et al. 2014; Sarkis 2004;
Ritter et al. 2007a, b), in that they are not about the scientific investigation of
whether intelligent tutors work or whether the key components of intelligent
tutors are effective or not. Instead these policy-level experiments are about
whether a policy to recommend use of these systems results in better outcomes.
As such, classrooms are counted as receiving the treatment as long as they were
assigned to it, and, irrespective of whether the tutoring system got used as
intended, or even irrespective of whether it got used at all. At some level, this
goes back to the social context issue. Namely, we want our systems to not only be
effective in principle, but get used in practice (and get used as intended) and
adoption is part of the social context. If adoption isn’t successful, that should be
something we as researchers ought to also be concerned about.

But, at the same time, it is also worth knowing whether systems are effective when
used as intended. And it is important to keep the two ideas clearly separated. Some
reported null results of Cognitive Tutors have been misinterpreted as suggesting the
approach is not effective. If we are being scientific, we shouldn’t be interpreting null
results at all. But, to the point here, it is quite likely these null results are a consequence
of poor implementation.
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If I were to give a message to young researchers on this topic, it would be that there
are multiple valuable forms of evaluation and the key is to find the right match with an
important research question.

Q) Let’s go back to the study published in 1997. You mention some limitations of
the study that, you see now, resulted from your youthful exuberance. Are there
any other limitations worth highlighting especially when considered from a
contemporary perspective?

A) I wasn’t meaning to say that the flaws in the study were a consequence of
youthful exuberance, rather I was trying to say that the kind of marketing
cheerleading for the approach was part of the youthful exuberance. I think we
did the best we could at the time. It wasn’t so much about not knowing better, it
was more about the challenge of even getting the cooperation of schools to
engage in a quasi-experimental study. Simply convincing some schools and
teachers that weren’t using the tutor to take all of our multiple post assessments
was not easy. But, for sure, a random assignment design is better.

Another limitation of that study is that while it indicated strong potential for the
whole course and tutor package, it did not help us understand which features were
crucial. Since then we have tried to do many more studies that contrast specific
elements of intelligent tutoring systems to understand which features and which
underlying principles of learning instruction really matter (cf., Koedinger et al. 2012).
A nice example, I’m sure you’ll agree, is a study we did together contrasting a version
of the Geometry Cognitive Tutor that prompted students to self-explain with one that
did not (Aleven and Koedinger 2002).

Finally, that study only began to scratch the surface regarding issues of technology
adoption and the social context of its use. There are still many related open questions
today.

Q) That connects nicely to the topic of practical impact that I wanted to bring up.
It seems to me that this paper, if I may state an opinion rather than a question, has
had substantial practical impact throughout the years. Do you agree? What do
you see as the practical impact of this study, and in particular, what role did this
study play in the dissemination of the cognitive tutor?

A) This study was the initial snowball that started what turned out to be a
widespread dissemination of the Cognitive Tutor course. The snowball quickly
rolled down hill, getting bigger and bigger with the number of schools using the
course nearly doubling every year in those earlier years. From the three schools
involved in this study in the 1993–94 school year, we reached 75 schools in the
1998–99 school year (Corbett et al. 2001). In the process, the research team
became increasingly overwhelmed and we began charging fees to staff the
demand. From this snowball effect emerged the idea that we could create a
self-sustaining company and, in 1998, Carnegie Mellon University and a large
team of founders formed Carnegie Learning (http://carnegielearning.com). Now
Cognitive Tutors are found in about 3000 schools and over a half million students
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use the courses each year. I suspect that if you add up all the students impacted it
is well over 5 million. There has been a lot of publicity in recent years about the
tens or hundreds of thousands of students starting MOOCs and some small
percentage completing them. Meanwhile our field of AI in Education has been
making this huge, less recognized, progress with impact on millions of students
and with the majority of those students finishing the course!

We have reflected about factors that led to this widespread dissemination (e.g.,
Corbett et al. 2001), including both the close integration of the technology into the
social context of use and the evaluation results of enhanced student learning outcomes.
These were both prime topics of this first paper reporting on Cognitive Tutor Algebra.
So I do think it is fair to say that it played a key role in driving, and guiding, the
dissemination success.

Q) To follow up, how do you see the role of scientific evidence of educational
effectiveness of the system play into the dissemination of educational technolo-
gies? Did the study described in the 1997 paper contribute to the dissemination of
cognitive tutors? Also, in today’s environment, how important of a factor is
scientific evidence in the marketplace?

A) Scientific evidence of educational effectiveness is a crucial component, but it
is not sufficient. I wish we were in a world where such evidence was necessary
for the success of an educational product, but we are not there yet. And, to be
sure, such evidence is not sufficient. Even when using multiple assessments as we
did, there are real risks that important learning or motivational outcomes are not
being measured. And, as I mentioned, most evaluations today only use a single
assessment, so they are at even greater risk of missing important outcomes or
even negative side-effects. Thus, in addition to evidence of effectiveness, a
product should also be evaluated in the context of educational theory – there
should be a justification for why the product works that is supported by what we
know about how people learn. Finally, the product should be intuitively compel-
ling and desirable to teachers and students.

Although scientific evidence of effectiveness is not yet a necessary factor in the
marketplace, it is much more prevalent today than it was in the early 1990s. This paper
had real influence on that movement. Furthermore, it was important in also highlighting
the other important roles of underlying theory and of adapting technology into the
social context.

Q) Continuing on the topic of practical impact and trying to trace the paper’s
history to today and maybe the future, one observation that can be made about
today’s e-learning landscape, although there are notable commercial success
stories of intelligent tutors like Cognitive Tutor and some of the constraint-based
tutors, intelligent tutoring systems seem to be missing in action almost entirely in
e-learning and MOOCs. Given the findings in your 1997 paper and subsequent
evaluation studies on intelligent tutors (summarized in the meta-reviews men-
tioned above), this is surprising. Is certain key research still missing that would
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facilitate the transitioning of tutor technology into actual educational practice? Are
there other things that ITS researchers can do to help facilitate this transition?

A) One of the themes of the original paper keeps re-emerging in my conversa-
tions with respect to thinking about the role of technology at the college level.
Namely, we have always viewed cognitive tutors not as a substitute for teachers
but as a part of the toolkit for teachers that would enhance their ability to do the
things they can uniquely do. That view of the role of technology, essentially
freeing the teacher to do the magical things that only great teachers can do, is
sometimes lost, certainly in caricatures of cognitive tutors as simply being about
isolated practice. The idea that ITSs should free the teacher to do more of what
she/he can do so well is critically important. In that regard, one of the key open
issues is: How much of the more open-ended problem solving and reasoning that
we want students to learn can intelligent tutoring systems support, either by
aiding students directly during open-ended problem solving or by helping them
prepare for such through well-chosen isolated practice of core skills? Another
related question is: What’s the relationship between that kind of more self-
directed open-ended behavior we want students to eventually engage in and what
they get from more structured practice within an intelligent tutoring system?
These are tough questions that we haven’t done enough to address. I do see clear
and growing interest in these questions in the AIED community, which is great.

Q) What I’m hearing is that the next frontier for intelligent tutoring systems and a
path towards continued impact and utility would be to address more open-ended
kinds of competencies and skills.

A) Including more open-ended activities within intelligent tutors is one clear route,
and one that should be taken, but it is not the only one. The other route is to more
deeply investigate the relationship between what we can do really effectively in
intelligent tutors, which is to isolate the things that are hardest for students to learn
and give them better learn-by-doing experiences to help them learn. ITSs of the
future should focus on core skills that (could) get reused over and over again, but
that too few students adequately acquire, such as critical thinking and argumen-
tation skills. The open-ended experience does not have to occur in the tutor. We
can design tutoring environments to facilitate students’ preparation to participate
in open-ended activities outside of the tutoring environment. Self-directed student
projects and social collaborative activities are powerful and the magic of the
teacher’s role should be preserved here. But, such activities can be more produc-
tive with the right kind of ITS preparation and follow-up. There’s great potential in
better understanding how tutors can position students to be effective in self-
directed collaborative groups and, furthermore, to use self-directed projects to
inspire students to seek a tutor to improve a skill they now recognize they need.

Q) So there might be some amount of bouncing back and forth between more
traditional intelligent tutoring on structured parts of the task domain and new
learning environments in which self-directed, open-ended problem solving takes
place?
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A) Yes, we need more research that tracks that kind of bouncing back and forth in
a way that might, on one hand, facilitate students having used a tutor to be better in
a project, or in the other direction, motivate students who have been engaged in a
project to work hard to learn something new. For example, a self-directed collab-
orative project to build a robot or to design an interactive birthday card might
reveal for a student that she needs more practice on programming or algebra skills.

Q) The rumor on the street is that you are working on a paper to be published in 2017
under the title Intelligent Tutoring Systems Go to School Worldwide. I was wonder-
ing if you might want to give a sneak preview of what’s going to be in that paper.

A) (laughing) Go Worldwide!!! There are tons of interesting opportunities in that
regard, particularly given how it’s possible to get low cost technological devices,
like smartphones, into the hands of poor communities and so forth. So, yeah,
that’s what we’ll do in that paper. 2017 is that my deadline? That’s a great goal
and I think that we need to find ways to get people to work together on big goals
like that. I keep emphasizing social context issues but it’s presuming that the
underlying deep cognitive analysis is being done well and effectively. You can’t
leave that out. In other words, we need to do everything for these projects to
succeed. If we’re going to go worldwide, we’re going to need teams of folks to
work together to get it done. Yeah, let’s do it!

Final Thoughts and Reflections

Q)Any disappointments? Thoughts about how AIED could have a bigger impact?

A) One disappointment I have is that research efforts that have advanced our
understanding of what works and/or advanced what’s possible technologically
have been slow to be incorporated in fielded Cognitive Tutor products. The
research team at Carnegie Learning, led by Steve Ritter, has been extremely open
about engaging in collaboration and supporting research studies. Nevertheless,
much of the innovation in the field in general, and even in our contributions, has
not seen much uptake. I am not sure why, but I am sure that there is more than
one reason.

Some technically attractive efforts such as free-form explanation feedback (Popescu
et al. 2003), collaborative peer tutoring (Walker et al. 2009), hand-written equation
entry (Anthony et al. 2005), and teachable agents (Matsuda et al. 2012), have shown
promise, but have not always produced clear demonstrations of improving student
learning outcomes above and beyond those achieved by the existing tutor. Some
approaches to supporting student metacognition and motivation, such as help-seeking
(Roll et al. 2014), sense-making on errors (Mathan and Koedinger 2003), or reducing
gaming the system (Baker et al. 2006) have been demonstrated to improve outcomes,
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but have not been incorporated, perhaps in part because of the cost of technical
development. In some cases where better outcomes in rigorous experimental studies
have been clearly achieved, such as learning benefits for adding menu-based self-
explanation (e.g., Aleven and Koedinger 2002), adding worked examples (e.g., Salden
et al. 2010) or adding more personalized problem scenarios (Walkington 2013), there
has been some limited influence on the product. However, it has not always been in line
with particulars of the research design (e.g., Carnegie Learning added an upfront
example in each unit, but the recommended approximate 50–50 example-problem ratio
and use of fading were not incorporated). Some of the most recent and powerful
demonstrations have shown how learning is improved through inserting new carefully
designed tasks based on data analytic approaches that discover hidden skills that were
not addressed in prior instruction (Koedinger and McLaughlin 2010; Koedinger et al.
2013). Neither of those particular results nor the methodology for producing them have
been incorporated in industry.

These are projects I know well and are directly relevant to Cognitive Tutors, but there
are many other powerful results in our AIED field that are too slowly getting out into use.

While slowly improving, a key issue remains that research is not the primary driver
in decision making within companies – particularly when development and marketing
departments express competing opinions. We need to change this situation by
producing, as Bror Saxberg (2015) says, more Blearning engineers^ who know how
to use scientific principles and analytic methods to produce better learning experiences
and learning outcomes.

Q) What influence has this paper had on the wider research community as
reflected by papers that have cited it?

A) Scanning the most highly cited papers that cite this one (using Google Scholar
on May 4, 2015), one observation is the wide variety of disciplinary contexts and
issues in which this paper is discussed. The disciplines span education, psychol-
ogy, and computer science. The issues include debates on learning theory
(Anderson et al. 1996), algebra teaching reform (Kieran 2007), how complex
learning (e.g., of algebra) is implemented in the human brain (Anderson 2007),
how technology is changing how children learn in school (Roschelle et al. 2000),
and use of Bayesian networks to improve student modeling (Conati et al. 2002).
In other words, researchers from many fields and topics of interest have found
value in this piece of AI in Education research.
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License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
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