33 research outputs found

    Pattern of neuropsychological performance among HIV positive patients in Uganda

    Get PDF
    BACKGROUND: Few studies have examined cognitive functioning of HIV positive patients in sub-Saharan Africa. It cannot be assumed that HIV positive patients in Africa exhibit the same declines as patients in high-resource settings, since there are differences that may influence cognitive functioning including nutrition, history of concomitant disease, and varying HIV strains, among other possibilities. Part of the difficulty of specifying abnormalities in neuropsychological functioning among African HIV positive patients is that there are no readily available African normative databases. The purpose of the current study was to evaluate the pattern of neuropsychological performance in a sample of HIV positive patients in comparison to HIV negative control subjects in Uganda. METHODS: The neuropsychological test scores of 110 HIV positive patients (WHO Stage 2, n = 21; WHO Stage 3, n = 69; WHO Stage 4, n = 20) were contrasted with those of 100 control subjects on measures of attention/concentration, mental flexibility, learning/memory, and motor functioning. RESULTS: Analysis of covariance (ANCOVA) revealed significant group differences on measures of verbal learning and memory, speed of processing, attention and executive functioning between HIV seropositive and seronegative subjects. CONCLUSION: Ugandan patients with HIV demonstrated relative deficits on measures of verbal learning and memory, speed of processing, attention, and executive functioning compared to HIV negative controls. These results from a resource limited region where clades A and D are prevalent are consistent with previous findings in the developed world where clade B predominates

    Adult reversal of cognitive phenotypes in neurodevelopmental disorders

    Get PDF
    Recent findings in mice suggest that it is possible to reverse certain neurodevelopmental disorders in adults. Changes in development, previously thought to be irreparable in adults, were believed to underlie the neurological and psychiatric phenotypes of a range of common mental health problems with a clear developmental component. As a consequence, most researchers have focused their efforts on understanding the molecular and cellular processes that alter development with the hope that early intervention could prevent the emergent pathology. Unexpectedly, several different animal model studies published recently, including animal models of autism, suggest that it may be possible to reverse neurodevelopmental disorders in adults: Addressing the underlying molecular and cellular deficits in adults could in several cases dramatically improve the neurocognitive phenotypes in these animal models. The findings reviewed here provide hope to millions of individuals afflicted with a wide range of neurodevelopmental disorders, including autism, since they suggest that it may be possible to treat or even cure them in adults

    Cognitive Dysfunction Is Sustained after Rescue Therapy in Experimental Cerebral Malaria, and Is Reduced by Additive Antioxidant Therapy

    Get PDF
    Neurological impairments are frequently detected in children surviving cerebral malaria (CM), the most severe neurological complication of infection with Plasmodium falciparum. The pathophysiology and therapy of long lasting cognitive deficits in malaria patients after treatment of the parasitic disease is a critical area of investigation. In the present study we used several models of experimental malaria with differential features to investigate persistent cognitive damage after rescue treatment. Infection of C57BL/6 and Swiss (SW) mice with Plasmodium berghei ANKA (PbA) or a lethal strain of Plasmodium yoelii XL (PyXL), respectively, resulted in documented CM and sustained persistent cognitive damage detected by a battery of behavioral tests after cure of the acute parasitic disease with chloroquine therapy. Strikingly, cognitive impairment was still present 30 days after the initial infection. In contrast, BALB/c mice infected with PbA, C57BL6 infected with Plasmodium chabaudi chabaudi and SW infected with non lethal Plasmodium yoelii NXL (PyNXL) did not develop signs of CM, were cured of the acute parasitic infection by chloroquine, and showed no persistent cognitive impairment. Reactive oxygen species have been reported to mediate neurological injury in CM. Increased production of malondialdehyde (MDA) and conjugated dienes was detected in the brains of PbA-infected C57BL/6 mice with CM, indicating high oxidative stress. Treatment of PbA-infected C57BL/6 mice with additive antioxidants together with chloroquine at the first signs of CM prevented the development of persistent cognitive damage. These studies provide new insights into the natural history of cognitive dysfunction after rescue therapy for CM that may have clinical relevance, and may also be relevant to cerebral sequelae of sepsis and other disorders

    Behavioural and histopathological alterations in mice with cerebral malaria.

    No full text
    Different features of sensorimotor function and behaviour were studied in murine cerebral malaria (CM) and malaria without cerebral involvement (non-CM) applying the primary screen of the SHIRPA protocol. Histopathological analysis of distinct brain regions was performed and the relative size of haemorrhages and plugging of blood cells to brain vasculature was analysed. Animals suffering from CM develop a wide range of behavioural and functional alterations in the progressive course of the disease with a statistically significant impairment in all functional categories assessed 36 h prior to death when compared with control animals. Early functional indicators of cerebral phenotype are impairments in reflex and sensory system and in neuropsychiatric state. Deterioration in function is paralleled by the degree of histopathological changes with a statistically significant correlation between the SHIRPA score of CM animals and the mean size of brain haemorrhage. Furthermore, image analysis yielded that the relative area of the brain lesions was significantly larger in the forebrain and brainstem compared with the other regions of interest. Our results indicate that assessment of sensory and motor tasks by the SHIRPA primary screen is appropriate for the early in vivo discrimination of cerebral involvement in experimental murine malaria. Our findings also suggest a correlation between the degree of functional impairment and the size of the brain lesions as indicated by parenchymal haemorrhage. Applying the SHIRPA protocol in the functional characterization of animals suffering from CM might prove useful in the preclinical assessment of new antimalarial and potential neuroprotective therapies

    The 'hidden' burden of malaria: cognitive impairment following infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The burden of post-malaria cognitive impairment is often overlooked. Given the large number of infections occurring worldwide, the magnitude of the problem is likely to be substantial. The objectives of this paper are; (i) to assess the evidence on post malarial cognitive impairment or impact on school education; (ii) to assess the possible positive impact of malaria drug prophylaxis on cognition; and (iii) to suggest recommendations on minimizing the burden of post-malarial cognitive impairment</p> <p>Methods</p> <p>PUBMED and SCOPUS were searched for all articles with the key word 'Malaria' in the title field and 'cognitive impairment' in any field. Google Scholar was searched for the same keywords anywhere in the article. The search was restricted to articles published in English within the last 15 years (1995-2010). After filtering of abstracts from the initial search, 44 papers had research evidence on this topic.</p> <p>Results & Discussion</p> <p>Cognitive abilities and school performance were shown to be impaired in sub-groups of patients (with either cerebral malaria or uncomplicated malaria) when compared with healthy controls. Studies comparing cognitive functions before and after treatment for acute malarial illness continued to show significantly impaired school performance and cognitive abilities even after recovery. Malaria prophylaxis was shown to improve cognitive function and school performance in clinical trials when compared to placebo groups. The implications of these findings are discussed.</p
    corecore