1,261 research outputs found

    Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

    Get PDF
    Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends stateof-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations.We discuss several possible generalizations of the CMA to tensors, including CTAs: based on  ber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.Fil: Ahmadi Asl, Salman. Skoltech - Skolkovo Institute Of Science And Technology; RusiaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Cichocki, Andrzej. Skolkovo Institute of Science and Technology; RusiaFil: Phan, Anh Huy. Skolkovo Institute of Science and Technology; RusiaFil: Tanaka, Toshihisa. Agricultural University Of Tokyo; JapónFil: Oseledets, Ivan. Skolkovo Institute of Science and Technology; RusiaFil: Wang, Jun. Skolkovo Institute of Science and Technology; Rusi

    Electrochemical determination of microRNAs based on isothermal strand-displacement polymerase reaction coupled with multienzyme functionalized magnetic micro-carriers

    Get PDF
    This study was supported by the National Natural Science Foundation of China (81371901), Doctoral Scientific Fund Project of the Ministry of Education of People's Republic of China (20134433110010), the Critical Point-of-Care Testing (CPOCT) Research grant of American Association for Clinical Chemistry (AACC) and 2015 Distinguished Academic Fellowships of Royal College of Engineering (DVF1415/2/79)

    Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

    Get PDF
    Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends state-of-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations. We discuss several possible generalizations of the CMA to tensors, including CTAs: based on fiber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.Instituto Argentino de Radioastronomí

    A hybrid solid electrolyte for flexible solid-state sodium batteries

    Get PDF
    Development of Na-ion battery electrolyte with high-performance electrochemical properties and high safety is still challenging to achieve. In this study, we report on a NASICON (Na3Zr2Si2PO12)-based composite hybrid solid electrolyte (HSE) designed for use in a high safety solid-state sodium battery for the first time. The composite HSE design yields the required solid-state electrolyte properties for this application, including high ionic conductivity, a wide electrochemical window, and high thermal stability. The solid-state batteries of half-cell type exhibit an initial discharge capacity of 330 and 131 mA h g(-1) for a hard carbon anode and a NaFePO4 cathode at a 0.2C-rate of room temperature, respectively. Moreover, a pouch-type flexible solid-state full-cell comprising hard carbon/HSE/NaFePO4 exhibits a highly reversible electrochemical reaction, high specific capacity, and a good, stable cycle life with high flexibility.open0

    Synthesis and Pro-Apoptotic Activity of Novel Glycyrrhetinic Acid Derivatives

    Get PDF
    Triterpenoids are used for medicinal purposes in many countries. Some, such as oleanolic and glycyrrhetinic acids, are known to be anti-inflammatory and anticarcinogenic. However, the biological activities of these naturally occurring molecules against their particular targets are weak, so the synthesis of new synthetic analogues with enhanced potency is needed. By combining modifications to both the A and C rings of 18βH-glycyrrhetinic acid, the novel synthetic derivative methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate was obtained. This derivative displays high antiproliferative activity in cancer cells, including a cell line with a multidrug-resistance phenotype. It causes cell death by inducing the intrinsic caspase-dependent apoptotic pathway

    On the stability of the exact solutions of the dual-phase lagging model of heat conduction

    Get PDF
    The dual-phase lagging (DPL) model has been considered as one of the most promising theoretical approaches to generalize the classical Fourier law for heat conduction involving short time and space scales. Its applicability, potential, equivalences, and possible drawbacks have been discussed in the current literature. In this study, the implications of solving the exact DPL model of heat conduction in a three-dimensional bounded domain solution are explored. Based on the principle of causality, it is shown that the temperature gradient must be always the cause and the heat flux must be the effect in the process of heat transfer under the dual-phase model. This fact establishes explicitly that the single- and DPL models with different physical origins are mathematically equivalent. In addition, taking into account the properties of the Lambert W function and by requiring that the temperature remains stable, in such a way that it does not go to infinity when the time increases, it is shown that the DPL model in its exact form cannot provide a general description of the heat conduction phenomena

    Quantum Fluctuation Theorems

    Full text link
    Recent advances in experimental techniques allow one to measure and control systems at the level of single molecules and atoms. Here gaining information about fluctuating thermodynamic quantities is crucial for understanding nonequilibrium thermodynamic behavior of small systems. To achieve this aim, stochastic thermodynamics offers a theoretical framework, and nonequilibrium equalities such as Jarzynski equality and fluctuation theorems provide key information about the fluctuating thermodynamic quantities. We review the recent progress in quantum fluctuation theorems, including the studies of Maxwell's demon which plays a crucial role in connecting thermodynamics with information.Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (eds.), "Thermodynamics in the quantum regime - Fundamental Aspects and New Directions", (Springer International Publishing, 2018
    corecore