106 research outputs found

    Nintedanib targets KIT D816V neoplastic cells derived from induced pluripotent stem cells of systemic mastocytosis

    Get PDF
    The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration-approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V-targeted therapy of advanced SM.Peer reviewe

    Enzymatic Depilation of Animal Hide: Identification of Elastase (LasB) from Pseudomonas aeruginosa MCM B-327 as a Depilating Protease

    Get PDF
    Conventional leather processing involving depilation of animal hide by lime and sulphide treatment generates considerable amounts of chemical waste causing severe environmental pollution. Enzymatic depilation is an environmentally friendly process and has been considered to be a viable alternative to the chemical depilation process. We isolated an extracellular protease from Pseudomonas aeruginosa strain MCM B-327 with high depilation activity using buffalo hide as a substrate. This 33 kDa protease generated a peptide mass fingerprint and de novo sequence that matched perfectly with LasB (elastase), of Pseudomonas aeruginosa. In support of this data a lasB mutant of MCM B-327 strain lacked depilatory activity and failed to produce LasB. LasB heterologously over-produced and purified from Escherichia coli also exhibited high depilating activity. Moreover, reintroduction of the lasB gene to the P. aeruginosa lasB mutant via a knock-in strategy also successfully restored depilation activity thus confirming the role of LasB as the depilating enzyme

    Deficiency of Vasodilator-Stimulated Phosphoprotein (VASP) Increases Blood-Brain-Barrier Damage and Edema Formation after Ischemic Stroke in Mice

    Get PDF
    Background: Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP) is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification. Methodology/Principal Findings: Focal cerebral ischemia was induced in Vasp2/2 mice and wild-type (WT) littermates by transient middle cerebral artery occlusion (tMCAO). Evan’s Blue tracer was applied to visualize the extent of blood-brainbarrier (BBB) damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p,0.05) and edema volumes (1.7 mm360.5 mm3 versus 0.8 mm360.4 mm3; p,0.0001) were significantly enhanced in Vasp2/2 mice compared to controls on day 1 after tMCAO. This was accompanied by a significant increase in infarct size (56.1 mm3617.3 mm3 versus 39.3 mm3610.7 mm3, respectively; p,0.01) and a non significant trend (p.0.05) towards worse neurological outcomes. Conclusion: Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage

    Graz Endocrine Causes of Hypertension (GECOH) study: a diagnostic accuracy study of aldosterone to active renin ratio in screening for primary aldosteronism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary aldosteronism (PA) affects approximately 5 to 10% of all patients with arterial hypertension and is associated with an excess rate of cardiovascular complications that can be significantly reduced by a targeted treatment. There exists a general consensus that the aldosterone to renin ratio should be used as a screening tool but valid data about the accuracy of the aldosterone to renin ratio in screening for PA are sparse. In the Graz endocrine causes of hypertension (GECOH) study we aim to prospectively evaluate diagnostic procedures for PA.</p> <p>Methods and design</p> <p>In this single center, diagnostic accuracy study we will enrol 400 patients that are routinely referred to our tertiary care center for screening for endocrine hypertension. We will determine the aldosterone to active renin ratio (AARR) as a screening test. In addition, all study participants will have a second determination of the AARR and will undergo a saline infusion test (SIT) as a confirmatory test. PA will be diagnosed in patients with at least one AARR of ≥ 5.7 ng/dL/ng/L (including an aldosterone concentration of ≥ 9 ng/dL) who have an aldosterone level of ≥ 10 ng/dL after the saline infusion test. As a primary outcome we will calculate the receiver operating characteristic curve of the AARR in diagnosing PA. Secondary outcomes include the test characteristics of the saline infusion test involving a comparison with 24 hours urine aldosterone levels and the accuracy of the aldosterone to renin activity ratio in diagnosing PA. In addition we will evaluate whether the use of beta-blockers significantly alters the accuracy of the AARR and we will validate our laboratory methods for aldosterone and renin.</p> <p>Conclusion</p> <p>Screening for PA with subsequent targeted treatment is of great potential benefit for hypertensive patients. In the GECOH study we will evaluate a standardised procedure for screening and diagnosing of this disease.</p

    In Vitro and In Vivo Anti-Inflammatory Activity of 17-O-Acetylacuminolide through the Inhibition of Cytokines, NF-κB Translocation and IKKβ Activity

    Get PDF
    BACKGROUND AND PURPOSE: 17-O-acetylacuminolide (AA), a diterpenoid labdane, was isolated for the first time from the plant species Neouvaria foetida. The anti-inflammatory effects of this compound were studied both in vitro and in vivo. EXPERIMENTAL APPROACH: Plant extracts were initially tested against LPS-stimulated release of tumor necrosis factor alpha (TNF-α) from murine macrophages (RAW264.7 cells). Based on bioassay-guided fractionation, the active compound was identified as AA. AA was tested for its ability to reduce nitric oxide (NO) production, and the inducible nitric oxide synthase (iNOS) expression. The inhibition of a panel of inflammatory cytokines (TNF, IL-1β, IL-6, KC, and GM-CSF) by AA was assessed at the expression and the mRNA levels. Moreover, the effect of AA on the translocation of the transcription factor nuclear factor kappa B (NF-κB) was evaluated in LPS-stimulated RAW264.7 cells and in TNF-stimulated L929 cells. Subsequently, AA was tested in the inhibitor of NF-κB kinase beta (IKKβ) activity assay. Lastly, the anti-inflammatory activity of AA in vivo was evaluated by testing TNF production in LPS-stimulated Balb/c mice. KEY RESULTS: AA effectively inhibited TNF-α release with an IC(50) of 2.7 µg/mL. Moreover, AA significantly inhibited both NO production and iNOS expression. It significantly and dose-dependently inhibited TNF and IL-1β proteins and mRNA expression; as well as IL-6 and KC proteins. Additionally, AA prevented the translocation of NF-κB in both cell lines; suggesting that it is acting at a post receptor level. This was confirmed by AA's ability to inhibit IKKβ activity, a kinase responsible for activating NF-κB, hence providing an insight on AA's mechanism of action. Finally, AA significantly reduced TNF production in vivo. CONCLUSIONS AND IMPLICATIONS: This study presents the potential utilization of this compound, as a lead for the development of an anti-inflammatory drug

    Diacylglycerol kinase β promotes dendritic outgrowth and spine maturation in developing hippocampal neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diacylglycerol kinase (DGK) is an enzyme that phosphorylates diacylglycerol to phosphatidic acid and comprises multiple isozymes of distinct properties. Of DGKs, mRNA signal for DGKβ is strongly detected in the striatum, and one of the transcripts derived from the human DGKβ locus is annotated in GenBank as being differentially expressed in bipolar disorder patients. Recently, we have reported that DGKβ is expressed in medium spiny neurons of the striatum and is highly concentrated at the perisynapse of dendritic spines. However, it remains elusive how DGKβ is implicated in pathophysiological role in neurons at the cellular level.</p> <p>Results</p> <p>In the present study, we investigated the expression and subcellular localization of DGKβ in the hippocampus, together with its functional implication using transfected hippocampal neurons. DGKβ is expressed not only in projection neurons but also in interneurons and is concentrated at perisynaptic sites of asymmetrical synapses. Overexpression of wild-type DGKβ promotes dendrite outgrowth at 7 d in <it>vitro </it>(DIV) and spine maturation at 14 DIV in transfected hippocampal neurons, although its kinase-dead mutant has no effect.</p> <p>Conclusion</p> <p>In the hippocampus, DGKβ is expressed in both projection neurons and interneurons and is accumulated at the perisynapse of dendritic spines in asymmetrical synapses. Transfection experiments suggest that DGKβ may be involved in the molecular machineries of dendrite outgrowth and spinogenesis through its kinase activity.</p

    Clinically Unapparent Infantile Thiamin Deficiency in Vientiane, Laos

    Get PDF
    Infantile beriberi, or clinical thiamin (vitamin B1) deficiency in infants, is a forgotten disease in Asia, where 100 years ago it was a major public health problem. Infants with this deficiency, commonly aged ∼ 2–3 months, present in cardiac failure but usually rapidly improve if given thiamin injections. It remains relatively common in Vientiane, Lao PDR (Laos), probably because of prolonged intra- and post-partum food avoidance behaviours. Clinical disease may be the tip of an iceberg with subclinical thiamin deficiency contributing to sickness in infants without overt clinical beriberi. We therefore recruited 778 sick infants admitted during one year at Mahosot Hospital, Vientiane, without clinical evidence of beriberi, and performed erythrocyte transketolase (ETK) assays. 13.4 % of infants had basal ETK<0.59 micromoles/min/gHb suggesting biochemical thiamin deficiency. Mortality was 5.5% but, among infants ≥2 months old, mortality was higher in those with basal ETK<0.59 micromoles/min/gHb (3/47, 6.4%) than in those with basal ETK≥0.59 micromoles/min/gHb (1/146, 0.7%) (P = 0.045, relative risk = 9.32 (95%CI 0.99 to 87.5)). We conclude that clinically unapparent thiamin deficiency is common among sick infants (≥2 months old) admitted to hospital in Vientiane. This may contribute to mortality and a low clinical threshold for providing thiamin to sick infants may be needed

    Coronin-1A Links Cytoskeleton Dynamics to TCRαβ-Induced Cell Signaling

    Get PDF
    Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of αβT cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-κB (IκB). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts αβT cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages
    corecore