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MYELOID NEOPLASIA
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KEY PO INT S

l Patient-derived KIT
D816V iPSCs and
CRISPR-engineered
KIT D816V ESCs
model SM disease
heterogeneity and
serve as a drug
screening platform.

l Nintedanib selectively
targets KIT D816V
iPSC- and ESC-derived
cells and primary
samples from SM
patients.

The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and
is key to neoplastic mast cell (MC) expansion and accumulation in affected organs.
Therefore, KITD816V represents a prime therapeutic target for SM. Here, we generated a
panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients
with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model
for mechanistic and drug-discovery studies.KITD816V iPSCs differentiated into neoplastic
hematopoietic progenitor cells andMCswith patient-specific phenotypic features, thereby
reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human
embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated
the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes consti-
tutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs
to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified
nintedanib, a US Food and Drug Administration–approved angiokinase inhibitor that
targets vascular endothelial growth factor receptor, platelet-derived growth factor re-
ceptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib

selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar
range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that
nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib
as a new drug candidate for KIT D816V–targeted therapy of advanced SM. (Blood. 2021;137(15):2070-2084)

Introduction
Mastocytosis is a group of hematopoietic malignancies that is char-
acterized by abnormal proliferation and accumulation of neoplastic
mast cells (MCs) in 1 or multiple tissues and organs, including bone
marrow (BM), spleen, liver, and skin.1,2 The degree of MC infiltration,
number of tissues/organs involved, and mutational load contribute to
aheterogeneouspathologyanddistinctdiseasecategories in systemic
mastocytosis (SM): indolentSM, smolderingSM,aggressiveSM(ASM),

MC leukemia (MCL), andSMwithanassociatedhematologicaldisease
(SM-AHD).1,3,4 ASM,MCL, and SM-AHD represent advanced forms of
SM that are characterized by pronounced MC infiltration compro-
mising organ function, rapid disease progression, andpoor prognosis.
Only a few therapeutic options are available for these patients.4-6

Mutations in the gene encoding the KIT receptor are central to
the evolution of SM, and the KIT D816V mutation is the most
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prevalent and identified in all SM categories.3,6-8 This mutation
leads to constitutive activation of KIT and abnormal expansion
and accumulation of MCs in affected organs.6,8,9 Several tyrosine
kinase inhibitors (TKIs) were reported to inhibit KIT activity in
neoplastic MCs.10-14 However, KIT D816V confers resistance to
several of these TKIs, including imatinib.11,15 Other TKIs, such as
midostaurin, suppress the growth of KIT D816V neoplastic MCs,
and, recently, midostaurin was approved for the treatment of
advanced SM.16-18 More recently, 2 additional compounds tar-
geting KIT D816V, ripretinib (DCC-2618) and avapritinib (BLU-
285), were identified and are being tested in clinical trials for
advanced SM.19-21 However, the performance of, and patient tol-
erability to, these TKIs can be variable because SM is a heteroge-
neous pathology; therefore, further efforts are needed to establish
preclinical models and identify new TKIs.

Primary samples of SM patients represent a scarce and highly
variable cell source for preclinical studies. Moreover, MCs often
represent a minor fraction in BM aspirates. In addition, few
human MC lines are available; among those, only 2, HMC-1.2
and ROSAD816V, express KIT D816V.8 Additionally, engineered or
establishedKITD816V cell lines do not fully recapitulateKITD816V
SM, because additional mutations in genes such as ASXL1, CBL,
RUNX1, SRSF2, and TET2 are commonly found in patients with KIT
D816VASMandMCL.8,22-24 These concurringmutations contribute
to disease heterogeneity and progression. Therefore, to study SM
pathology and to screen for compounds targeting SM cells, more
authentic disease models that more faithfully recapitulate the
genetic and functional features of SM are required.

Patient-derived induced pluripotent stem cells (iPSCs) provide
an inexhaustible cell source for diseasemodeling anddrug screening
while retaining the patient-specific genetic background, including
disease-specific and/or associated mutations.25-27 Additionally, iPSCs
and embryonic stem cells (ESCs) are readily subjected to ge-
nome engineering by CRISPR/Cas9 to precisely introduce or
repair oncogenic mutations.26,28,29

We report here on the generation of KIT D816V iPSCs from SM
patients. SM-derived KIT D816V iPSCs differentiated into he-
matopoietic progenitor cells (HPCs) andMCs with patient-specific
features. Additionally, we introduced the KIT D816V mutation
into human ESCs by CRISPR/Cas9n, thus generating a panel of
KIT D816V and KIT-unmutated iPSC and ESC lines. Compound
screening identified the TKI nintedanib (Vargatef, Ofev) and its
analogs as potent novel KIT D816V inhibitors. This finding was
recapitulated in iPSC- and ESC-derivedKITD816V hematopoietic
cells and SM primary samples, thereby demonstrating KIT D816V–
specific targeting by nintedanib.

Materials and methods
iPSC generation and culture
Reprogramming of SM primary samples (supplemental Table 1;
available on the Blood Web site) and cultivation of iPSCs were
performed as described previously.29 KIT D816V mutation was
detected by allele-specific PCR (supplemental Table 2).

Generation of KIT D816V ESCs by CRISPR/Cas9n
editing
Human HES-3 ESCs (ES03) were from the WiCell Research In-
stitute and were cultured as described for iPSCs.29 ESC studies

were approved by German authorities, Robert Koch Institute,
Berlin, Germany (permit no. 1710-79-1-4-79). KIT D816V ESCs
were generated as described previously using the pX335 vector
(Addgene 42335) and oligonucleotides listed in supplemental
Table 3.29

Cytogenetic analysis and Epi-Pluri test
All iPSC clones generated were subjected to karyotype analysis
using GTG banding, as before.29 Epi-Pluri-Score analysis was
performed as described.30

Immunofluorescence staining
iPSCs and ESCs were stained for pluripotency markers, and
endothelial cells were stained for CD31 and CD144 (supple-
mental Table 4), essentially as described previously.29

Hematopoietic differentiation of iPSCs and ESCs
iPSCs were differentiated into hematopoietic progenitor cells
and MCs using an embryonic body (EB)-based protocol.31,32

ESCs were differentiated toward the hematopoietic lineage by
adapting a hypoxia-based protocol.29 CD341 HPCs were iso-
lated by magnetic-activated cell sorting (MACS; Miltenyi Biotec)
and expanded for up to 12 days at 37°C and 5% CO2 in he-
matopoietic differentiation medium.31

Compound testing on hematopoietic cells, MCs,
and endothelial cells
MACS-selected KIT1 or KIT2 hematopoietic cells derived from
iPSCs or ESCs were cultured with compounds in a 96-well format
(Greiner), with 104 cells per well, in 90 mL of drug screening
medium (RPMI 1640 supplemented with 10% fetal calf serum,
2 mM L-glutamine, 100 U/mL penicillin, and 100 mg/mL strep-
tomycin; all from Thermo Fisher Scientific) for 66 hours. Cell
viability was determined using a CellTiter-Glo Luminescent Cell
Viability Assay, SpectraMAX i3 Plate Reader, and SoftMax Pro
Software.

CD451KIThigh iPSC-derived MCs were seeded at a density of 53
103 cells per well and subjected to compound testing, as above.
Endothelial cells (104 cells per well) were treated with compounds
in fully supplemented EGM-2 medium (Lonza) for 48 hours and
then analyzed as above.

Detailed methods for next-generation sequencing (NGS) anal-
ysis, endothelial cell differentiation, proliferation assay, low-
density lipoprotein (LDL) uptake assay, flow cytometry analysis
and sorting, apoptosis assay, western blotting, colony-forming
unit (CFU) assay, cytospin preparations, drug sensitivity and
resistance testing (DSRT) assay, compound testing on primary
cells, animal studies, reverse transcription polymerase chain
reaction (RT-PCR) analysis, and molecular docking are provided
in supplemental Methods.

Results
KITD816V iPSCs express a constitutively active KIT
receptor
KIT D816V iPSCs were generated from 14 KIT D816V/H SM
patients by reprogramming peripheral blood or BM mono-
nuclear cells (supplemental Table 1). More than 1000 iPSC lines
were obtained, and 5 KIT D816V iPSC lines (3 from patient 1,
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1 from patient 2, and 1 from patient 3) and 5 unmutated KIT iPSC
lines (2 from patient 1, 1 from patient 2, and 2 from patient 3;
hereafter referred to as controls) were used in this study. All 10
iPSC lines were pluripotent, as determined by morphology;
expression of the pluripotency markers OCT4, NANOG, TRA-1-
60, and TRA-1-81; and by Epi-Pluri-Score analysis (Figure 1A;
supplemental Figure 1A-B).30 Karyotype analysis of all iPSCs
showed normal GTG banding and no numeric abnormalities
(supplemental Figure 1C).

All KIT D816V iPSCs showed reduced KIT surface expression in
comparison with unmutated KIT cells (supplemental Figure
1D-E), which is in line with KIT D816V being confined to and
signaling from intracellular compartments.9 Additionally, KIT
D816V iPSCs showed strong phosphorylation of glycosylated and
nonglycosylated forms of the receptor without stem cell factor
(SCF) stimulation (supplemental Figure 1F). Control iPSCs showed
very low phosphorylation of glycosylated KIT; upon SCF stimu-
lation, receptor internalization and phosphorylation of unmutated
glycosylated KIT, AKT, and STAT3 were observed. These data
are in accordance with KIT D816V representing a constitutively
active receptor in iPSCs.

KIT D816V and control iPSCs exhibit
patient-specific phenotypes upon hematopoietic
differentiation
KIT D816V and control iPSCs were induced to differentiate into
hematopoietic cells in an EB-based protocol (Figure 1B).31 A
CD451/KIThigh MC population was observed for KIT D816V and
control iPSC-derived cells. In patient 1 and 2 samples, this
population was more prominent in the KIT D816V genotype
(Figure 1C-D) and was observed at early time points (.14 days;
supplemental Figure 2A). KIT D816V conferred a proliferative
advantage to KIT1 cells, regardless of SCF stimulation, com-
pared with KIT-unmutated KIT1 cells (supplemental Figure 2B).
KIT D816V also sustained cell viability upon cytokine with-
drawal. Thus, KIT D816V promotes MC development in vitro in
our iPSC model and confers greater proliferation capacity to
hematopoietic cells.

Additionally, iPSCs exhibited patient-specific differentiation
propensities. Patient 1 KIT D816V iPSC-derived cells showed a
prominent erythroid CD235a1CD431KIT1 population; in CFU
assays, burst-forming unit-erythroid (BFU-E) colonies were ob-
served only in the mutated genotype (Figure 1C,F-G; supple-
mental Figure 3A-B). Cytospin preparations of KIT D816V
CD235a1 cells revealed different stages of erythroid maturation
(supplemental Figure 3C). Patient 2 iPSCs showed a prominent
CD451/KIT1 population during differentiation, with myeloid

progenitor morphology concomitant with prominent apoptosis
(Figure 1C,E; supplemental Figure 4). CFU assays showed a
strong bias toward granulocytes and macrophages for KIT
D816V and control cells, whereas abnormal CFU-M of small size
were observed only in controls (Figure 1G). Patient 3 KIT D816V
and control iPSC–derived hematopoietic cells showed a
prominent CD451/KIThigh MC population (Figure 1C-D; sup-
plemental Figure 5A). CFU assays revealed decreased colony-
forming potential and a bias toward the macrophage lineage, in
agreement with the abundance of macrophages in cytospin
preparations (Figure 1G; supplemental Figure 5B).

Finally, iPSC-derived cells exhibited hematopoietic gene ex-
pression profiles, as well as recapitulated the erythroid bias
observed in patient 1 KIT D816V iPSC–derived hematopoietic
cells, as shown by the high expression of hemoglobin genes
HBB, HBE, and HBZ (Figure 1H).

KIT D816V iPSCs harbor patient-specific
mutation profiles
Previous studies have shown mutations other than KIT D816V in
patients with advanced mastocytosis, most frequently in ASXL1,
CBL, RUNX1, SRSF2, and TET2, which correlate with poor
survival.22,23 In agreement with these observations, we identified
a patient-specific subset of mutations in ASM and MCL primary
samples that was recapitulated in the iPSCs derived therefrom
(Table 1; supplemental Figure 6). Of particular relevance, an
NFE2 truncating mutation was identified concurrent with KIT
D816V in patient 1 iPSCs. In patient 2, an SRSF2 in-frame 8-aa
deletion (P95_R102del) was detected in all iPSC cell lines,
whereas additional likely pathogenic mutations in RUNX1 and
TET2 were found only in control iPSCs. In the primary sample
from patient 3, no KIT D816V or other pathogenic or likely
pathogenic mutation was detected, in agreement with the low
number of KIT D816V iPSCs obtained (1/129 screened). The
presence of different concurring mutations reflects the clonal
composition and the genetic complexity of SM pathology and
highlights the value of the iPSC lines generated in this study as a
tool for disease modeling and compound screening.

KIT D816V ESCs recapitulate phenotypes of KIT
D816V iPSCs
To address the question of a potential influence of concurrent
mutations on SM iPSC differentiation, we introduced the KIT
D816V mutation into human ESCs by CRISPR/Cas9n technology
(supplemental Figure 7). As observed for KIT D816V iPSCs, KIT
receptor surface expression in KIT D816V ESCs was lower than
in control ESCs, although no difference in KIT messenger RNA
(mRNA) expression was detected (supplemental Figure 8A).

Figure 1. Hematopoietic differentiation of patient-specific KIT D816V iPSCs. (A) KIT D816V mutation in iPSCs by allele-specific PCR (upper panel). KIT D816V mutation in
iPSCs by Sanger sequencing (lower panels). Control 1-3, iPSCs without mutation; D816V 1-3, iPSCs with mutation; M, molecular weight marker; W, water control; -, HMC-1.1 cell
line;1, HMC-1.2 cell line. (B) Hematopoietic differentiation protocol. EBs were formed from iPSCs (Ba-b) and differentiated toward the hematopoietic lineage (Bc-d). Scale bars,
500 mm. (C) Representative flow cytometry analysis of KIT D816V and control iPSC-derived hematopoietic cells from patients 1 through 3. The plots represent synchronized
hematopoietic-differentiation experiments and show patient-specific phenotypes. Gates 1, 2, and 3 are for CD451/KIThigh, CD451/KIT1, and CD235a1 cells, respectively. (D)
Quantification of CD451/KIThigh populations for KITD816V and control iPSC-derived cells from all 3 patients (P1, P2, and P3). Flow cytometry was performed between days 15 and
31 of hematopoietic differentiation (n5 4-21). *P, .0001. (E) Quantification of CD451/KIT1 populations by flow cytometry, as in (D), between days 15 and 49 of differentiation (n
5 4-30). *P# .0003. (F) Quantification of CD235a1 population by flow cytometry, as in (D), between days 15 and 49 of differentiation (n5 4-30). *P, .0001. (G) CFU assay for KIT
D816V and control iPSC-derived hematopoietic cells. Colony numbers and phenotype were evaluated 14 days after seeding. Bars indicate average colony numbers6 standard
deviation of $3 independent experiments, with the exception of patient 2 control iPSCs (n 5 2). *P 5 .02. (H) Quantitative RT-PCR data for patient 1–derived KIT D816V and
control iPSCs and corresponding HPCs. Results are from 2 and 4 independent hematopoietic-differentiation experiments for control and KIT D816V HPCs, respectively. Gene
expression values were subjected to bidirectional hierarchical clustering and are shown in heat map format (red and blue represent high and low gene expression, respectively).
Statistical analysis was performed with Welch’s t test.
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Strong phosphorylation of nonglycosylated KIT D816V re-
ceptor was also observed in western blot analysis (supple-
mental Figure 8B-C).

KIT D816V ESC differentiation yielded .95% CD451 hematopoie-
ticcells, includingCD451/KIThighMCs (Figure2A; supplementalFigure 9).
Importantly, KIT D816V ESC-derived hematopoietic cells showed
an erythroid bias, although it was not as prominent as in KIT
D816V iPSC-derived cells frompatient 1 (CD2351 ESCD816V 15
8.0 6 2.9; CD2351 ESC D816V 2 5 9.6 6 3.9; CD2351 patient 1
D816V 5 24.6 6 14.5, population size in percentage of living
cells). Accordingly, cytospin preparations showed higher numbers
of nucleated erythrocytes for KIT D816V cells (Figure 2A). In CFU
assays, colony-forming unit-erythroid (CFU-E) and BFU-E were
only observed for mutated progenitors, and higher expression

of hemoglobin genesHBB,HBE, andHBZwas observed (Figure
2A,C-D). No significant difference was observed for KIT D816V
and control CD451/KIThigh MC populations, in agreement with
the reported weak oncogenic effect of KIT D816V alone.33 Taken
together, these results demonstrate that KIT D816V ESCs re-
capitulate the phenotypes observed in patient-derivedKITD816V
iPSCs, such as constitutive KIT phosphorylation, reduced surface
expression of the mutated receptor, and erythroid bias upon
hematopoietic differentiation.

The TKI nintedanib targets KIT D816V
hematopoietic cells
We next focused on identifying compounds that selectively
target KIT D816V iPSC-derived hematopoietic cells. A library
of 459 compounds was first tested on HMC-1 cell lines
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(supplemental Figure 10; supplemental Table 5), and selected
compounds were further analyzed on iPSC-derived KIT D816V
hematopoietic cells (Figure 3A-B). We identified nintedanib as a
potent KIT D816V inhibitor, significantly reducing cell viability
of KIT D816V hematopoietic cells from all 3 patients in the
nanomolar range (50% inhibitory concentration [IC50]D816V 5
27.5-104.9 nM; IC50control 5 262.1-541.7 nM). We also included
midostaurin and imatinib in our studies, because midostaurin is
used to treat patients with advanced SM, whereas imatinib is
ineffective in KIT D816V SM.15-17,20 Nintedanib and midostaurin
showed similar potency on KIT D816V cells, and, as expected,
imatinib was essentially ineffective. Rigosertib, an RAS mimetic
compound, was also tested because oncogenic RAS mutations
are commonly reported in hematologic malignancies, including
SM.2,34 Rigosertib treatment of iPSC-derived cells showed no
specificity for KIT D816V cells, and response was variable among
patients (Figure 3B).

We further compared drug responses of KIT1 and KIT2 cells and
observed selective targeting of KIT1 cells by nintedanib and
midostaurin, which was more pronounced in KIT D816V cells
than in control cells (supplemental Figure 11A). Western blot
analysis of iPSC-derived cells treatedwith nintedanib ormidostaurin
revealed an efficient reduction in KIT and STAT3 phosphorylation;
those effects were more pronounced in nintedanib-treated
samples, in which a significant reduction in total KIT protein
was observed (Figure 3C; supplemental Figure 12).

Importantly, nintedanib and midostaurin activity and higher
selectivity for KIT1 over KIT2 cells were also observed in KIT
D816V ESC-derived cells (supplemental Figure 11B-D). Thus,
KIT D816V ESC-derived cells fully recapitulate hematopoietic
phenotypes and drug responses observed for KIT D816V iPSC-
derived cells and further validate KIT D816V as a valuable target
in SM.

To evaluate whether the origin and differentiation stage of iPSC-
derived cells impact drug responses, we used MACS to select
CD341 HPCs from the hemogenic endothelium and expanded
cells for an additional 10 to 20 days. Again, a strong reduction in
the viability of KIT1 mutated cells was observed upon treatment
with nintedanib or midostaurin (supplemental Figure 13A-C).
Additionally, CD341 HPCs displayed the same cell fate bias as
did cells obtained directly from iPSCs, such as the erythroid bias
observed in patient 1 (supplemental Figure 13D).

We further compared the response of KIT D186V iPSC-derived
hematopoietic cells to nintedanib, avapritinib (BLU-2815), or rip-
retinib (DCC-2618), because the latter 2 compounds are being
evaluated in clinical trials for advanced SM.19-21,35 Avapritinib and
ripretinib effectively reduced viability of the HMC-1.1 and HMC-

1.2 cell lines and phosphorylation of KIT, STAT5, AKT, and ERK
(supplemental Figure 14), which is in accordance with previous
studies.19,21,35 Finally, as observed for nintedanib, avapritinib and
ripretinib preferentially reduced the viability of iPSC-derived KIT
D816V cells (supplemental Figure 15). These results show the se-
lectivity of avapritinib and ripretinib for KIT D816V and validate the
robustness of the KIT D816V iPSC system established in this study.

Next, we assessed the impact of nintedanib treatment on the
viability of KIT D816V/H and KIT S476I SM primary samples. A
reduction in cell viability $50% was observed for 6 of 9 primary
mononuclear cell (MNC) samples (supplemental Figure 16A;
supplemental Table 6). Additionally, nintedanib preferentially
targeted KIT1 primary MNCs over KIT2 primary MNCs, leading
to a reduction in cell viability$50% in 6 of 11 primary samples. In
contrast, midostaurin showed less selectivity and affected KIT1

and KIT2 primary cells from SM patients and healthy donors
(Figure 3D-E; supplemental Figure 16B; supplemental Table 6).
Nintedanib treatment led to a reduction in KIT D816V allele
burden in SMMNCs (supplemental Figure 16C), and the degree
of response to nintedanib correlated positively with KIT D816V/
H mutational burden (supplemental Figure 17A). Western blot
analysis showed a strong reduction in KIT, STAT5, and ERK
phosphorylation in a KIT D816H SM primary sample upon
treatment with nintedanib (1 mM) (supplemental Figure 17B), in
agreement with the data obtained using our iPSC-based model.

KIT D816V iPSC-derived MCs are targeted
by nintedanib
A CD451/KIThigh MC population was obtained at later time
points of hematopoietic differentiation for all KIT D816V and
control iPSCs lines used in this study (Figure 4A). KITD816VMCs
showed higher surface and gene expression of FCER1A than did
control cells, whereas no differences were observed for CD45
and KIT (Figure 4B,E). Fluorescence-activated cell sorting (FACS)-
purified MCs revealed a homogenous cell population with mul-
tilobulated nuclei and some larger cells with metachromatic and
tryptase-positive cytoplasmic granules, features of immature
MCs (Figure 4C-D; supplemental Figure 18). Quantitative RT-
PCR analysis showed high expression of tryptase gene products
TPSAB1 and TPSB2, whereas carboxypeptidase A3 and CMA1
mRNA expression was rather low (Figure 4E).

Importantly, as observed for hematopoietic progenitor cells, KIT
D816V MCs exhibited a remarkable reduction in cell viability
upon treatment with nintedanib in comparison with control cells
(patient 1 IC50D816V 5 34.7 nM; patient 3 IC50D816V 5 34.6 nM;
patient 1 IC50control 5 633.2 nM; Figure 4F-G).

In agreement with our data from iPSC-derived MCs, ROSA KIT
D816V MCs36 responded strongly to nintedanib in vitro

Figure 3 (continued) imatinib, or rigosertib for 66 hours. Vehicle (DMSO)-treated cells were used as control (0 nM). Patient 1: n 5 6-12. Patient 2: n 5 3-9. Patient 3: n 5 6-9.
*P# .05, **P, .001, ***P# .0001, drug responses of KITD816V vs control KIT1 cells at the same drug concentration,Welch’s t test. (C) Representative western blot analysis of KIT
receptor signaling upon nintedanib or midostaurin treatment of KIT D816V iPSC–derived hematopoietic cells. Cells were treated with 1 mM compound for 4 hours prior to
analysis. Vehicle (DMSO)-treated cells were used as control. Positions of molecular weight markers are indicated. (D) Nintedanib response curves (0-10 mM) for SM primary
sample (patient 10) and a healthy donor (HD; n 5 2). MNCs were subjected to MACS, and KIT1 and KIT2 cells were treated with nintedanib for 66 hours, followed by viability
measurement using a CellTiter Glo assay. Vehicle (DMSO)-treated cells were used as control. Nintedanib shows cytotoxicity to healthy donor cells only at concentrations closer
to 10 mM, whereas cell viability is severely compromised at concentrations . 100 nM. (E) Averaged response of 7 to 11 SM primary samples and 6 to 8 HD primary samples to
1 mMnintedanib or midostaurin treatment. MNCs were treated as described in (D). Nintedanib treatment led to a significant decrease in the viability of KIT1 SMMNCs, whereas
midostaurin targeted KIT1 and KIT2 cells equally. Additionally, nintedanib did not have a significant impact on the viability of HD cells, in contrast to midostaurin, which led to a
significant reduction in the viability of KIT1 and KIT2 HD cells. *P # .0003, Welch’s t test.
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(supplemental Figure 19A). Treatment of ROSA KIT D816V–
engrafted NSG mice with nintedanib led to a reduction in that
cell population in peripheral blood and spleen, whereas no
effect was observed in BM (supplemental Figure 19B-D).

Nintedanib preferentially targets iPSC-derived
hematopoietic cells over iPSC-derived
endothelial cells
Nintedanib was initially developed as an inhibitor of vascular
endothelial growth factor receptors (VEGFRs), which are crucial
for the development and function of endothelial cells.37,38 In-
creased angiogenesis in BM MC infiltrates is a key histopatho-
logical feature in SM patients.39 Therefore, we determined the
impact of nintedanib on endothelial cells derived from SM KIT
D816V and control iPSCs (Figure 5A). KIT D816V and control
iPSC-derived endothelial cells expressed CD31, CD34, CD105,
CD144, and KIT and were capable of lipid (acetylated LDL)
uptake (Figure 5B-E). Nintedanib reduced the viability of KIT
D816V and control endothelial cells, and significant differences
in the drug response were observed with 1 mMof the compound
(Figure 5F). Nintedanib activity on iPSC-derived cells was com-
parable to that observed on human BM–derived endothelial cells
(supplemental Figure 20). Importantly, cytotoxic effects were
20-fold to 100-fold more pronounced on iPSC-derived hemato-
poietic progenitor cells and MCs than on endothelial cells, re-
gardless of the presence of the KIT D816V mutation (Figure 5G).

Nintedanib occupies the ATP binding site in
KIT D816V
Nintedanib is an indolinone derivative type II kinase inhibitor of
VEGFR, platelet-derived growth factor receptor (PDGFR), and
fibroblast growth factor receptor.37,38 It binds to the adenosine
triphosphate (ATP) binding site cleft between the C- and N-terminal
lobes of the VEGFR kinase domain.37 Thus, we compared the
nintedanib binding site in VEGFR2 (PDB code 3C7Q) with the
ATP binding sites of all available structures of KIT (unmutated
and KITD816V; supplemental Figure 21A). Our analysis revealed
the geometrical similarity of VEGFR2 and KIT and steric fitting of
nintedanib into the inactive KIT receptor, in agreement with the
biological data reported in this study. Induced fit molecular
docking studies showed that, on average, nintedanib has a higher
affinity (evaluated here as Glide Score) for inactive KIT D816V
(based on PDB code 3G0F) than for unmutated KIT, either in its
inactive or active state (PDB code 3G0E and 1PKG, respectively;
supplemental Figure 21B). Nintedanib preferentially binds to KIT
D816V by orienting the indole moiety toward the A-loop and the
methylpiperazine moiety toward the C-terminal region (supple-
mental Figure 22).

Further analysis revealed that midostaurin and avapritinib dis-
play higher affinity for the active unmutated KIT receptor and
poor affinity for inactive KIT (unmutated or KIT D816V), whereas
ripretinib and imatinib showed a preference for inactive KIT
(unmutated or KIT D816V) over the active conformation (sup-
plemental Figures 21B and 23), in agreement with previous
reports.19,40

Nintedanib analogs are potent KIT D816V
inhibitors
To further extend the structure-function relationship between
nintedanib and KIT D816V, we screened a library of 43 ninte-
danib analogs with 80% to 98% structural similarity to nintedanib
(supplemental Table 7). Compounds were tested on KIT D816V
and control iPSC-derived hematopoietic cells; 7 of them pref-
erentially targeted KITD816V cells (Figure 6A). Four compounds
(BIBG1724TF, BIBF1496XX, BIBE3315BS, and BIBE3316BS) were
further evaluated and showed IC50 values similar to nintedanib
(Figure 6B-C).

To rationalize, at the molecular level, the observed activity of
nintedanib derivatives, we modeled these compounds against
KIT D816V and unmutated KIT structures by performing induced
fit molecular docking calculations. All nintedanib derivatives
displayed the highest Glide Scores for KIT D816V in comparison
with unmutated KIT, suggesting preferential binding to the
mutated receptor (supplemental Figure 24A), which agrees with
our assays on KIT D816V cells. When bound to KIT D816V,
BIBG1724TF, BIBF1496XX, BIBE3315BS, and BIBE3316BS lo-
cated their indole-like moiety toward the A-loop in a similar
position as the indolemoiety of nintedanib, and they established
similar molecular contacts with the same amino acid residues in
KIT D186V (Figure 6D; supplemental Figure 24B).

Discussion
We report that, upon differentiation into hematopoietic pro-
genitor cells and MCs, KIT D816V iPSCs from ASM and MCL
patients recapitulate the SM phenotype. In this model, drug
screening identified nintedanib (Vargatef, Ofev) as a potent TKI
targeting KIT D816V neoplastic cells from patient-specific iPSCs,
gene-edited ESCs, and primary SM samples.

KIT D816V iPSCs harbor concurring mutations in genes such as
TET2, NEF2, NRAS, SRSF2, and RUNX1, thereby reflecting the
clonal composition of patient samples and SM heterogeneity.
The impact of these mutations was observed during in vitro
differentiation, as iPSCs harboring KIT D816V and NFE2 mu-
tations presented an erythroid-biased hematopoiesis. This is in

Figure 4. Nintedanib targetsKITD816VMCs. (A) Flow cytometry analysis of KITD816V and control iPSC-derived CD451/KIThigh MCs at.30 days of differentiation (patient 1).
(B) KIT D816V MCs (red) show higher expression of FCER1A compared with control cells (blue) (upper panel; dashed line is shown as a reference). Mean fluorescence intensity
(MFI) of FCER1A (n5 6-9), KIT (n5 18-19), and CD45 (n5 15-17) on KITD816VMCs and controls (lower panels) * P5 .017, Welch’s t test. (C) Representative composite images of
acidic toluidine blue–stained cytospins (left panels) or smears (right panels) of FACS-sorted KIT D816V and control MCs (image assembly indicated by dotted lines). Ho-
mogenous population of multilobulated promastocytes with (arrowheads) or without (arrows) metachromatic granules were observed. Scale bars, 25 mm. (D) Same as in (C), but
stained for tryptase. Cells with high (arrowheads) and low (arrows) number of tryptase-positive granules were observed. Scale bars, 25 mm. For full representative images of (C)
and (D) see supplemental Figure 18. (E) Quantitative RT-PCR analysis for KITD816V and control FACS-sortedMCs (n5 9-15 and n5 3-7, respectively). mRNA expression of MC-
specific chymase 1 (CMA1), tryptase a/b 1 (TPSAB1), tryptase b2 (TPSB2), carboxypeptidase A3 (CPA3), FCER1A, and KIT is depicted. KITD816VMCs show higher FCER1AmRNA
expression compared with unmutated KIT cells. *P 5 .014, Welch’s t test. (F) Drug response curves of FACS-sorted KIT D816V and control MCs (n 5 5 and n 5 4, respectively,
derived from 2 KIT D816V iPSC lines and 1 control iPSC line) treated with nintedanib, midostaurin, or imatinib. Nintedanib IC50 values were 34 and 633 nM for KIT D816V and
control cells, respectively. Midostaurin IC50 values were 48 and 570 nM for KIT D816V and control cells, respectively. (G) Averaged drug response6 standard deviation of KIT
D816V and control iPSC–derived FACS sorted MCs (n5 9-15 and n5 12, respectively) treated with 100 nM or 1 mM nintedanib, midostaurin, or imatinib. *P5 .02, **P# .0006,
drug responses of KIT D816V vs control MCs at the same drug concentration, Welch’s t test. ns, not significant.
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line with a reported case of KIT D816V SM-AHD with associated
acute erythroid leukemia.41 Mutations in TET2, RUNX1, and
SRSF2 in patient 2 iPSCs led to myeloid-biased hematopoiesis
andpronounced apoptosis, in agreementwith publisheddata and
the myelodysplastic syndrome diagnosed for this patient.42-46

Nintedanib is a type II kinase inhibitor being used for the
treatment of non–small cell lung cancer and idiopathic pulmo-
nary fibrosis.37,38,47 Importantly, nintedanib has a manageable
safety and tolerability profile with long-term use in pulmonary
fibrosis patients.48 Nintedanib treatment decreased the viability
of KIT-expressing iPSC-derived hematopoietic cells and strongly
reduced KIT and STAT3 phosphorylation, in agreement with the
important role for STAT proteins in downstream signaling of
oncogenic KIT.49 KIT D816V iPSC-derived cells were also tar-
geted by midostaurin, avapritinib (BLU-285), and ripretinib
(DCC-2618), in agreement with previous reports and clinical trials
for these compounds.17,19-21 Importantly, nintedanib compro-
mised cell viability of SM patient samples and blocked KIT D816V
phosphorylation and signaling in primary patient cells.

Molecular docking studies further corroborated our drug screening
data and revealed that nintedanib preferentially binds to the ATP
binding pocket of inactive KIT D816V.We also identified additional
nintedanib analogs with KIT D816V selectivity and mapped key
residues in the ATP binding pocket for interaction with the indole
moiety of these compounds. This information should be useful for
studies on guided chemical enhancement of nintedanib-based
compounds by tailoring specific ligand-receptor interactions to
increase compound affinity and specificity.

The iPSC-based disease model also enabled us to evaluate the
impact of KIT D816V on MCs. KIT D816V was correlated with a
more accelerated and prominent development of MCs during
hematopoietic differentiation of iPSCs, in agreement with the
abnormal MC expansion and infiltration observed in SM. No
morphological difference was observed between KITD816V and
control MCs, but KIT D816V MCs exhibited higher expression
and surface levels of FCER1A, reflecting accelerated MC de-
velopment and maturation. Most importantly, KIT D816V iPSC-
derived MCs were also targeted efficiently by nintedanib.

We further exploited our SM iPSC panel to evaluate the potential
cytotoxic effects of nintedanib on endothelial cells, because this
compound was initially developed as an inhibitor for VEGFR, a key
receptor for endothelial cell development and function.37,38 In-
terestingly, nintedanib preferentially targeted iPSC-derived hema-
topoietic cells and MCs over iPSC-derived endothelial cells. These
results demonstrate the versatility of our iPSC-based diseasemodel.

One limitation of our SM disease model is the permanent
presence of the KIT D816V and associated mutations in iPSCs
and in all cells derived therefrom. Thus, KIT D816V iPSCs rep-
resent a snapshot of a particular disease state, and their dif-
ferentiation into KIT D816V hematopoietic progenitors and MCs
does not mirror SM disease progression. In this context, whether
theKITD816Vmutation is an early or late event in SMpathogenesis
is under debate. Jawhar et al identified KITD816V as a late event
following TET2, SRSF2, and ASXL1 mutations.23 Grootens et al,
using single-cell RNA sequencing of SM patient samples,
identified KIT D816V in hematopoietic stem cells, as well as in
lineage-primed progenitors andMCs.50 More recently, leukemic

stem cells for MCL were reported to reside in the CD341/CD382

fraction of the malignant clone.51 In light of these reports, our
iPSC-based SM disease model stands as a powerful tool for the
systematic evaluation of KIT D816V’s impact on the different
stages of hematopoiesis.

In summary, we report on the first iPSC-based model for SM and
envision an expansion of our library of SM-derived iPSCs with KIT
D816V and associated mutations to provide an even more
comprehensive array of SM disease models. Additionally, ninte-
danib, identified in this study as an effective KITD816V inhibitor, is
already in clinical use; thus, it should be considered an additional
and/or alternative option for the treatment of advanced SM.

Acknowledgments
The authors thank Ursula Gollan for cytogenetic analysis; SaskiaMitzka for
gene expression analysis; the Interdisciplinary Center for Clinical Re-
search Aachen FACS Core Facility and Transgenic Service Facility,
Faculty of Medicine, RWTH Aachen University; Katrin Götz and Gülcan
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