395 research outputs found

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Alpha-1-acid glycoprotein as potential biomarker for alpha-fetoprotein-low hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The outcome of patients with hepatocellular carcinoma (HCC) remains poor because of late diagnosis. We determined the performances of α -1-acid glycoprotein (AAG) and des-γ-carboxy prothrombin (DCP) for the diagnosis of HCC, especially for α-fetoprotein (AFP)-low HCC.</p> <p>Methods</p> <p>Of the 220 patients included in this retrospective study, 124 had HCC, and 61 (49%) of these were AFP-low HCC (AFP ≤ 20 ng/mL). The remaining 96 patients, including 49 with chronic hepatitis B or C and 47 with cirrhosis, were considered as control. Plasma AAG was analyzed using high performance liquid chromatography (HPLC) and confirmed using Western blot technique.</p> <p>Results</p> <p>When all patients with HCC were evaluated, the area under receiver operating characteristic (ROC) curves for AAG (0.94, 95% CI: 0.91-0.97) and DCP (0.92, 95% CI: 0.88-0.95) were similar (<it>P </it>= 0.40). AAG had better area under ROC curve (0.96, 95% CI: 0.94-0.99) than DCP (0.87, 95% CI: 0.81-0.93) for AFP-low HCC (<it>P </it>< 0.05). At the specificity 95%, the sensitivity of AAG was higher in AFP-low HCC than in AFP-high HCC (82% and 62%, respectively). In contrast, higher sensitivity was obtained from DCP in discriminating HCC patients with low AFP than that in high AFP (57% and 90%, respectively).</p> <p>Conclusion</p> <p>Our cross-sectional study showed that AAG was better performance in diagnosing HCC patients with low AFP, while DCP did better in those with high AFP.</p

    A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family

    Get PDF
    The NUDIX enzymes are involved in cellular metabolism and homeostasis, as well as mRNA processing. Although highly conserved throughout all organisms, their biological roles and biochemical redundancies remain largely unclear. To address this, we globally resolve their individual properties and inter-relationships. We purify 18 of the human NUDIX proteins and screen 52 substrates, providing a substrate redundancy map. Using crystal structures, we generate sequence alignment analyses revealing four major structural classes. To a certain extent, their substrate preference redundancies correlate with structural classes, thus linking structure and activity relationships. To elucidate interdependence among the NUDIX hydrolases, we pairwise deplete them generating an epistatic interaction map, evaluate cell cycle perturbations upon knockdown in normal and cancer cells, and analyse their protein and mRNA expression in normal and cancer tissues. Using a novel FUSION algorithm, we integrate all data creating a comprehensive NUDIX enzyme profile map, which will prove fundamental to understanding their biological functionality

    Selective Down-Regulation of Nuclear Poly(ADP-Ribose) Glycohydrolase

    Get PDF
    The formation of ADP-ribose polymers on target proteins by poly(ADP-ribose) polymerases serves a variety of cell signaling functions. In addition, extensive activation of poly(ADP-ribose) polymerase-1 (PARP-1) is a dominant cause of cell death in ischemia-reperfusion, trauma, and other conditions. Poly(ADP-ribose) glycohydrolase (PARG) degrades the ADP-ribose polymers formed on acceptor proteins by PARP-1 and other PARP family members. PARG exists as multiple isoforms with differing subcellular localizations, but the functional significance of these isoforms is uncertain.Primary mouse astrocytes were treated with an antisense phosphorodiamidate morpholino oligonucleotide (PMO) targeted to exon 1 of full-length PARG to suppress expression of this nuclear-specific PARG isoform. The antisense-treated cells showed down-regulation of both nuclear PARG immunoreactivity and nuclear PARG enzymatic activity, without significant alteration in cytoplasmic PARG activity. When treated with the genotoxic agent MNNG to induced PARP-1 activation, the antisense-treated cells showed a delayed rate of nuclear PAR degradation, reduced nuclear condensation, and reduced cell death.These results support a preferentially nuclear localization for full-length PARG, and suggest a key role for this isoform in the PARP-1 cell death pathway

    Progesterone Receptor Activates Msx2 Expression by Downregulating TNAP/Akp2 and Activating the Bmp Pathway in EpH4 Mouse Mammary Epithelial Cells

    Get PDF
    Previously we demonstrated that EpH4 mouse mammary epithelial cells induced the homeobox transcription factor Msx2 either when transfected with the progesterone receptor (PR) or when treated with Bmp2/4. Msx2 upregulation was unaffected by Wnt inhibitors s-FRP or Dkk1, but was inhibited by the Bmp antagonist Noggin. We therefore hypothesized that PR signaling to Msx2 acts through the Bmp receptor pathway. Herein, we confirm that transcripts for Alk2/ActR1A, a non-canonical BmpR Type I, are upregulated in mammary epithelial cells overexpressing PR (EpH4-PR). Increased phosphorylation of Smads 1,5, 8, known substrates for Alk2 and other BmpR Type I proteins, was observed as was their translocation to the nucleus in EpH4-PR cells. Analysis also showed that Tissue Non-Specific Alkaline Phosphatase (TNAP/Akp2) was also found to be downregulated in EpH4-PR cells. When an Akp2 promoter-reporter construct containing a ½PRE site was transfected into EpH4-PR cells, its expression was downregulated. Moreover, siRNA mediated knockdown of Akp2 increased both Alk2 and Msx2 expression. Collectively these data suggest that PR inhibition of Akp2 results in increased Alk2 activity, increased phosphorylation of Smads 1,5,8, and ultimately upregulation of Msx2. These studies imply that re-activation of the Akp2 gene could be helpful in downregulating aberrant Msx2 expression in PR+ breast cancers

    Impact of Small Body Weight on Tenofovir-Associated Renal Dysfunction in HIV-Infected Patients: A Retrospective Cohort Study of Japanese Patients

    Get PDF
    BACKGROUND: Treatment with tenofovir is sometimes associated with renal dysfunction. Limited information is available on this side effect in patients with small body weight, although the use of tenofovir will spread rapidly in Asia and Africa, where patients are likely to be of smaller body weight. METHODS: In a single-center cohort, Japanese patients with HIV infection who started tenofovir-containing antiretroviral therapy were retrospectively analyzed. The incidence of tenofovir-associated renal dysfunction, defined as more than 25% decrement of estimated glomerular filtration rate (eGFR) from the baseline, was determined. The effects of small body weight and body mass index (BMI) on tenofovir-associated renal dysfunction, respectively, were estimated in univariate and multivariate Cox hazards models as the primary exposure. Other possible risk factors were evaluated by univariate analysis and those found significant were entered into the multivariate analysis. RESULTS: The median weight of 495 patients was 63 kg. Tenofovir-related renal dysfunction occurred in 97 (19.6%) patients (incidence: 10.5 per 100 person-years). Univariate analysis showed that the incidence of tenofovir-related renal dysfunction was significantly associated with smaller body weight and BMI, respectively (per 5 kg decrement, HR = 1.23; 95% CI, 1.10-1.37; p<0.001)(per 1 kg/m(2) decrement, HR = 1.14; 95% CI, 1.05-1.23; p = 0.001). Old age, high baseline eGFR, low serum creatinine, low CD4 count, high HIV viral load, concurrent nephrotoxic drugs, hepatitis C infection, and current smoking were also associated with tenofovir-related renal dysfunction. Multivariate analysis identified small body weight as a significant risk (adjusted HR = 1.13; 95% CI, 1.01-1.27; p = 0.039), while small BMI had marginal significance (adjusted HR = 1.07; 95% CI 1.00-1.16; p = 0.058). CONCLUSION: The incidence of tenofovir-associated renal dysfunction in Japanese patients was high. Small body weight was identified as an independent risk factor for tenofovir-associated renal dysfunction. Close monitoring of renal function is advocated for patients with small body weight treated with tenofovir

    NF-KappaB expression correlates with apoptosis and angiogenesis in clear cell renal cell carcinoma tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clear cell renal cell carcinoma (ccRCC) is the most frequently encountered tumor in the adult kidney. Many factors are known to take part in the development and progression of this tumor. Nuclear factor kappa B (NF-κB) is a family of the genes that includes five members acting in events such as inflammation and apoptosis. In this study, the role of NF-κB (p50 subunit) in ccRCC and its relation to angiogenesis and apoptosis were investigated.</p> <p>Methods</p> <p>Formalin-fixed and paraffin embedded tissue blocks from 40 patients with ccRCC were studied. Expressions of NF-κB (p50), VEGF, EGFR, bc1-2 and p53 were detected immunohistochemically. The relationship of NF-κB with these markers and clinicopathological findings were evaluated.</p> <p>Results</p> <p>The expression of NF-κB was detected in 35 (85%), VEGF in 37 (92.5%), EGFR in 38 (95%), bc1-2 in 33 (82.5%) and p53 in 13 (32.5%) of 40 ccRCC patients. Statistical analyses revealed a significant relation between NF-κB expression and VEGF (p = 0.001), EGFR (p = 0.004), bc1-2 (p = 0.010) and p53 (p = 0.037). There was no significant correlation between NF-κB and such parameters as tumor grade, stage, age and sex.</p> <p>Conclusion</p> <p>The results of this study indicated that in ccRCC cases NF-κB was associated with markers of angiogenesis and apoptosis such as VEGF, EGFR, bc1-2 and p53. In addition, the results did not only suggest a close relationship between NF-κB and VEGF, EGFR, bc1-2 and p53 in ccRCC, but also indicate that NF-κB was a potential therapeutic target in the treatment of ccRCC resistant to chemotherapy.</p

    A Genomewide Functional Network for the Laboratory Mouse

    Get PDF
    Establishing a functional network is invaluable to our understanding of gene function, pathways, and systems-level properties of an organism and can be a powerful resource in directing targeted experiments. In this study, we present a functional network for the laboratory mouse based on a Bayesian integration of diverse genetic and functional genomic data. The resulting network includes probabilistic functional linkages among 20,581 protein-coding genes. We show that this network can accurately predict novel functional assignments and network components and present experimental evidence for predictions related to Nanog homeobox (Nanog), a critical gene in mouse embryonic stem cell pluripotency. An analysis of the global topology of the mouse functional network reveals multiple biologically relevant systems-level features of the mouse proteome. Specifically, we identify the clustering coefficient as a critical characteristic of central modulators that affect diverse pathways as well as genes associated with different phenotype traits and diseases. In addition, a cross-species comparison of functional interactomes on a genomic scale revealed distinct functional characteristics of conserved neighborhoods as compared to subnetworks specific to higher organisms. Thus, our global functional network for the laboratory mouse provides the community with a key resource for discovering protein functions and novel pathway components as well as a tool for exploring systems-level topological and evolutionary features of cellular interactomes. To facilitate exploration of this network by the biomedical research community, we illustrate its application in function and disease gene discovery through an interactive, Web-based, publicly available interface at http://mouseNET.princeton.edu
    corecore