30 research outputs found

    Multi-hazards coastal vulnerability assessment of Goa, India, using geospatial techniques

    Get PDF
    The state of Goa in West India has a 105km long coastline with beaches and cultural heritage sites of significant importance to tourism. The increasing incidence of tropical cyclones in the Arabian Sea in recent decades and the devastating impacts of the December 2004 tsunami in India stressed the importance of assessing the vulnerability of coastal areas to flooding and inundation, notably in view of climate change induced sea-level rising (SLR). This study aims to develop a Coastal Vulnerability Index (CVI) for the state of Goa and to use this index to examine the vulnerability of the different administrative units of the state, known as talukas. This is accomplished by using seven physical and geologic risk variables characterising the vulnerability of the coast, including historical shoreline change, rate of relative sea-level change, coastal regional elevation, coastal slope, mean tidal range, significant wave height, and geomorphology using conventional and remotely sensed data, in addition to two socio-economic parameters: population and tourist density data. Using a composite CVI based on those relative risk variables, each of the seven coastal talukas was categorised according to its vulnerability. The resulting vulnerability map depicts the talukas that are the most and least vulnerable to erosion, flooding and inundation of coastal lands, and that the inclusion of socio-economic parameters influences the overall assessment of vulnerability. This study provides information aimed at increasing awareness amongst decision-makers to deal with disaster mitigation and coastal zone management, and is a first step towards prioritising areas for climate change adaptation in view of the projected SLR and increased storminess

    Tissue-Autonomous Function of Drosophila Seipin in Preventing Ectopic Lipid Droplet Formation

    Get PDF
    Obesity is characterized by accumulation of excess body fat, while lipodystrophy is characterized by loss or absence of body fat. Despite their opposite phenotypes, these two conditions both cause ectopic lipid storage in non-adipose tissues, leading to lipotoxicity, which has health-threatening consequences. The exact mechanisms underlying ectopic lipid storage remain elusive. Here we report the analysis of a Drosophila model of the most severe form of human lipodystrophy, Berardinelli-Seip Congenital Lipodystrophy 2, which is caused by mutations in the BSCL2/Seipin gene. In addition to reduced lipid storage in the fat body, dSeipin mutant flies accumulate ectopic lipid droplets in the salivary gland, a non-adipose tissue. This phenotype was suppressed by expressing dSeipin specifically within the salivary gland. dSeipin mutants display synergistic genetic interactions with lipogenic genes in the formation of ectopic lipid droplets. Our data suggest that dSeipin may participate in phosphatidic acid metabolism and subsequently down-regulate lipogenesis to prevent ectopic lipid droplet formation. In summary, we have demonstrated a tissue-autonomous role of dSeipin in ectopic lipid storage in lipodystrophy

    Topical Polyethylene Glycol as a Novel Chemopreventive Agent for Oral Cancer via Targeting of Epidermal Growth Factor Response

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a major cause of morbidity and mortality underscoring the need for safe and effective chemopreventive strategies. Targeting epidermal growth factor receptor (EGFR) is attractive in that it is an early critical event in HNSCC pathogenesis. However, current agents lack efficacy or have unacceptable toxicity. Several groups have demonstrated that the over-the-counter medication, polyethylene glycol (PEG) has remarkable chemopreventive efficacy against colon carcinogenesis. Importantly, we reported that this effect is mediated through EGFR internalization/degradation. In the current study, we investigated the chemopreventive efficacy of this agent against HNSCC, using both the well validated animal model 4-NQO (4-nitroquinoline 1-oxide) rat model and cell culture with the human HNSCC cell line SCC-25. We demonstrated that daily topical application of 10% PEG-8000 in the oral cavity (tongue and cavity wall) post 4NQO initiation resulted in a significant reduction in tumor burden (both, tumor size and tumors/tumor bearing rat) without any evidence of toxicity. Immunohistochemical studies depicted decreased proliferation (number of Ki67-positive cells) and reduced expression of EGFR and its downstream effectors cyclin D1 in the tongue mucosa of 4NQO-rats treated with PEG. We showed that EGFR was also markedly downregulated in SCC-25 cells by PEG-8000 with a concomitant induction of G1-S phase cell-cycle arrest, which was potentially mediated through upregulated p21cip1/waf1. In conclusion, we demonstrate, for the first time, that PEG has promising efficacy and safety as a chemopreventive efficacy against oral carcinogenesis

    Hmgcr in the Corpus Allatum Controls Sexual Dimorphism of Locomotor Activity and Body Size via the Insulin Pathway in Drosophila

    Get PDF
    The insulin signaling pathway has been implicated in several physiological and developmental processes. In mammals, it controls expression of 3-Hydroxy-3-Methylglutaryl CoA Reductase (HMGCR), a key enzyme in cholesterol biosynthesis. In insects, which can not synthesize cholesterol de novo, the HMGCR is implicated in the biosynthesis of juvenile hormone (JH). However, the link between the insulin pathway and JH has not been established. In Drosophila, mutations in the insulin receptor (InR) decrease the rate of JH synthesis. It is also known that both the insulin pathway and JH play a role in the control of sexual dimorphism in locomotor activity. In studies here, to demonstrate that the insulin pathway and HMGCR are functionally linked in Drosophila, we first show that hmgcr mutation also disrupts the sexual dimorphism. Similarly to the InR, HMGCR is expressed in the corpus allatum (ca), which is the gland where JH biosynthesis occurs. Two p[hmgcr-GAL4] lines were therefore generated where RNAi was targeted specifically against the HMGCR or the InR in the ca. We found that RNAi-HMGCR blocked HMGCR expression, while the RNAi-InR blocked both InR and HMGCR expression. Each RNAi caused disruption of sexual dimorphism and produced dwarf flies at specific rearing temperatures. These results provide evidence: (i) that HMGCR expression is controlled by the InR and (ii) that InR and HMGCR specifically in the ca, are involved in the control of body size and sexual dimorphism of locomotor activity
    corecore