53 research outputs found

    Involvement of Noradrenergic Neurotransmission in the Stress- but not Cocaine-Induced Reinstatement of Extinguished Cocaine-Induced Conditioned Place Preference in Mice: Role for β-2 Adrenergic Receptors

    Get PDF
    The responsiveness of central noradrenergic systems to stressors and cocaine poses norepinephrine as a potential common mechanism through which drug re-exposure and stressful stimuli promote relapse. This study investigated the role of noradrenergic systems in the reinstatement of extinguished cocaine-induced conditioned place preference by cocaine and stress in male C57BL/6 mice. Cocaine- (15 mg/kg, i.p.) induced conditioned place preference was extinguished by repeated exposure to the apparatus in the absence of drug and reestablished by a cocaine challenge (15 mg/kg), exposure to a stressor (6-min forced swim (FS); 20–25°C water), or administration of the α-2 adrenergic receptor (AR) antagonists yohimbine (2 mg/kg, i.p.) or BRL44408 (5, 10 mg/kg, i.p.). To investigate the role of ARs, mice were administered the nonselective β-AR antagonist, propranolol (5, 10 mg/kg, i.p.), the α-1 AR antagonist, prazosin (1, 2 mg/kg, i.p.), or the α-2 AR agonist, clonidine (0.03, 0.3 mg/kg, i.p.) before reinstatement testing. Clonidine, prazosin, and propranolol failed to block cocaine-induced reinstatement. The low (0.03 mg/kg) but not high (0.3 mg/kg) clonidine dose fully blocked FS-induced reinstatement but not reinstatement by yohimbine. Propranolol, but not prazosin, blocked reinstatement by both yohimbine and FS, suggesting the involvement of β-ARs. The β-2 AR antagonist ICI-118551 (1 mg/kg, i.p.), but not the β-1 AR antagonist betaxolol (10 mg/kg, i.p.), also blocked FS-induced reinstatement. These findings suggest that stress-induced reinstatement requires noradrenergic signaling through β-2 ARs and that cocaine-induced reinstatement does not require AR activation, even though stimulation of central noradrenergic neurotransmission is sufficient to reinstate

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Mycobacterium marinum antagonistically induces an autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-dependent manner.

    Get PDF
    Autophagy is a eukaryotic catabolic process also participating in cell-autonomous defence. Infected host cells generate double-membrane autophagosomes that mature in autolysosomes to engulf, kill and digest cytoplasmic pathogens. However, several bacteria subvert autophagy and benefit from its machinery and functions. Monitoring infection stages by genetics, pharmacology and microscopy, we demonstrate that the ESX-1 secretion system of Mycobacterium marinum, a close relative to M. tuberculosis, upregulates the transcription of autophagy genes, and stimulates autophagosome formation and recruitment to the mycobacteria-containing vacuole (MCV) in the host model organism Dictyostelium. Antagonistically, ESX-1 is also essential to block the autophagic flux and deplete the MCV of proteolytic activity. Activators of the TORC1 complex localize to the MCV in an ESX-1-dependent manner, suggesting an important role in the manipulation of autophagy by mycobacteria. Our findings suggest that the infection by M. marinum activates an autophagic response that is simultaneously repressed and exploited by the bacterium to support its survival inside the MCV

    Analytical model for the calculation of lateral velocity distributions in potential cross-sections

    Full text link
    [EN] The hydraulic modeling of water depth and flow velocities in open channel flows that were fitted by power-law cross-section stand out for their versatility, allowing their use in numerous practical applications, both in natural and artificial channels. The determination of the hydraulic variables of depth and average velocity has been widely studied in potential cross-sections; however, the variation seen in these variables along the cross-section was not found in the literature. Knowledge of this variation allows the development of studies (e.g. to know the approximate damage in different areas of the cross-section, to analyse sediment transport, or other applications in river hydraulics). This paper presents a methodology which allows calculation of the hydraulic variables in any area of a power-law cross-section. The methodology is applied to symmetrical cross-sections, comparing its generated results with the obtained values by different computational hydraulic codes, which are thoroughly accepted by scientific community, such as CES, HEC-RAS and IBER. The obtained predictions of hydraulic parameters (using the explicit formulation described in this research) present very low errors when compared with results of other models, with great computational cost. These errors reach a root mean square error (RMSE) of 0.13 and 0.05 in the determination of velocities' lateral distribution and the ratio between velocity and average velocity. These values indicate a very successful validation for the analysed symmetrical sections.[ES] La modelización hidráulica de calados y velocidades de flujo, en cauces con secciones que admiten una representación de tipo potencial, se destaca por su versatilidad, permitiendo su utilización en numerosas aplicaciones prácticas tanto en canales naturales como artificiales. El cálculo de las variables hidráulicas (calado y velocidad media) ha sido ampliamente estudiado para este tipo de secciones. Sin embargo, en la literatura técnica no se han encontrado estudios que muestren la variación de estas magnitudes a lo largo de la sección transversal. El conocimiento de esta variación permite desarrollar estudios (ejemplo: conocer de manera aproximada los daños en diferentes zonas de la sección, analizar el transporte de sedimentos, estudiar los procesos de erosión u otras aplicaciones en hidráulica fluvial). Presentamos una metodología que permite el cálculo de las variables hidráulicas en cualquier zona de una sección tipo potencial. La metodología es aplicada a secciones simétricas, comparando los resultados generados con los obtenidos por diferentes códigos hidráulicos computacionales ampliamente aceptados por la comunidad científica (p-e- CES, HECRAS e IBER). Las predicciones de los parámetros hidráulicos obtenidas (usando la formulación explícita descrita en este artículo) presentan errores muy bajos, en comparación con otros modelos con mayor costo computacional. Estos errores alcanzan un valor promedio para la raíz del error cuadrático medio (RMSE) en el cálculo de la distribución lateral de velocidades de 0.13 y de 0.05, en el cálculo de la relación de velocidades respecto a la velocidad media. Estos valores indican una validación muy satisfactoria para las secciones simétricas analizadas.Sánchez-Romero, F.; Pérez-Sánchez, M.; López Jiménez, PA. (2018). Modelo analítico para el cálculo de distribuciones de velocidad laterales en secciones tipo potencial-ley. RIBAGUA - Revista Iberoamericana del Agua. 5(1):29-47. doi:10.1080/23863781.2018.1442189S29475

    Modeling early recovery of physical function following hip and knee arthroplasty

    Get PDF
    BACKGROUND: Information on early recovery after arthroplasty is needed to help benchmark progress and make appropriate decisions concerning patient rehabilitation needs. The purpose of this study was to model early recovery of physical function in patients undergoing total hip (THA) and knee (TKA) arthroplasty, using physical performance and self-report measures. METHODS: A sample of convenience of 152 subjects completed testing, of which 69 (mean age: 66.77 ± 8.23 years) underwent THA and 83 (mean age: 60.25 ± 11.19 years) TKA. Postoperatively, patients were treated using standardized care pathways and rehabilitation protocols. Using a repeated measures design, patients were assessed at multiple time points over the first four postoperative months. Outcome measures included the Lower Extremity Function Scale (LEFS), the physical function subscale of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC PF), the 6 minute walk test (6 MWT), timed up and go test (TUG) and a timed stair test (ST). Average recovery curves for each of the measures were characterized using hierarchical linear modeling. Predictors of recovery were sequentially modeled after validation of the basic developmental models. RESULTS: Slopes of recovery were greater in the first 6 to 9 weeks with a second-degree polynomial growth term (weeks squared) providing a reasonable fit for the data over the study interval. Different patterns of recovery were observed between the self-report measures of physical function and the performance measures. In contrast to the models for the WOMAC PF and the LEFS, site of arthroplasty was a significant predictor (p = 0.001) in all of the physical performance measure models with the patients post TKA initially demonstrating higher function. Site of arthroplasty (p = 0.025) also predicted the rate of change for patients post THA and between 9 to 11 weeks after surgery, the THA group surpassed the function of the patients post TKA. CONCLUSION: Knowledge about the predicted growth curves will assist clinicians in referencing patient progress, and determining the critical time points for measuring change. The study has contributed further evidence to highlight the benefit of using physical performance measures to learn about the patients' actual level of disability

    Inhibitory Role of Inducible cAMP Early Repressor (ICER) in Methamphetamine-Induced Locomotor Sensitization

    Get PDF
    BACKGROUND: The inducible cyclic adenosine monophosphate (cAMP) early repressor (ICER) is highly expressed in the central nervous system and functions as a repressor of cAMP response element-binding protein (CREB) transcription. The present study sought to clarify the role of ICER in the effects of methamphetamine (METH). METHODS AND FINDINGS: We tested METH-induced locomotor sensitization in wildtype mice, ICER knockout mice, and ICER I-overexpressing mice. Both ICER wildtype mice and knockout mice displayed increased locomotor activity after continuous injections of METH. However, ICER knockout mice displayed a tendency toward higher locomotor activity compared with wildtype mice, although no significant difference was observed between the two genotypes. Moreover, compared with wildtype mice, ICER I-overexpressing mice displayed a significant decrease in METH-induced locomotor sensitization. Furthermore, Western blot analysis and quantitative real-time reverse transcription polymerase chain reaction demonstrated that ICER overexpression abolished the METH-induced increase in CREB expression and repressed cocaine- and amphetamine-regulated transcript (CART) and prodynorphin (Pdyn) expression in mice. The decreased CART and Pdyn mRNA expression levels in vivo may underlie the inhibitory role of ICER in METH-induced locomotor sensitization. CONCLUSIONS: Our data suggest that ICER plays an inhibitory role in METH-induced locomotor sensitization

    Corticotropin Releasing Factor-Induced CREB Activation in Striatal Neurons Occurs via a Novel Gβγ Signaling Pathway

    Get PDF
    The peptide corticotropin-releasing factor (CRF) was initially identified as a critical component of the stress response. CRF exerts its cellular effects by binding to one of two cognate G-protein coupled receptors (GPCRs), CRF receptor 1 (CRFR1) or 2 (CRFR2). While these GPCRs were originally characterized as being coupled to Gαs, leading to downstream activation of adenylyl cyclase (AC) and subsequent increases in cAMP, it has since become clear that CRFRs couple to and activate numerous other downstream signaling cascades. In addition, CRF signaling influences the activity of many diverse brain regions, affecting a variety of behaviors. One of these regions is the striatum, including the nucleus accumbens (NAc). CRF exerts profound effects on striatal-dependent behaviors such as drug addiction, pair-bonding, and natural reward. Recent data indicate that at least some of these behaviors regulated by CRF are mediated through CRF activation of the transcription factor CREB. Thus, we aimed to elucidate the signaling pathway by which CRF activates CREB in striatal neurons. Here we describe a novel neuronal signaling pathway whereby CRF leads to a rapid Gβγ- and MEK-dependent increase in CREB phosphorylation. These data are the first descriptions of CRF leading to activation of a Gβγ-dependent signaling pathway in neurons, as well as the first description of Gβγ activation leading to downstream CREB phosphorylation in any cellular system. Additionally, these data provide additional insight into the mechanisms by which CRF can regulate neuronal function

    Riluzole Attenuates L-DOPA-Induced Abnormal Involuntary Movements Through Decreasing CREB1 Activity

    Get PDF
    Chronic administration of L-DOPA, the first-line treatment of dystonic symptoms in childhood or in Parkinson's disease, often leads to the development of abnormal involuntary movements (AIMs), which represent an important clinical problem. Although it is known that Riluzole attenuates L-DOPA-induced AIMs, the molecular mechanisms underlying this effect are not understood. Therefore, we studied the behavior and performed RNA sequencing of the striatum in three groups of rats that all received a unilateral lesion with 6-hydroxydopamine in their medial forebrain bundle, followed by the administration of saline, L-DOPA, or L-DOPA combined with Riluzole. First, we provide evidence that Riluzole attenuates AIMs in this rat model. Subsequently, analysis of the transcriptomics data revealed that Riluzole is predicted to reduce the activity of CREB1, a transcription factor that regulates the expression of multiple proteins that interact in a molecular landscape involved in apoptosis. Although this mechanism underlying the beneficial effect of Riluzole on AIMs needs to be confirmed, it provides clues towards novel or existing compounds for the treatment of AIMs that modulate the activity of CREB1 and, hence, its downstream targets
    corecore