385 research outputs found

    Instantons and Killing spinors

    Get PDF
    We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kaehler 6-manifolds, nearly parallel G_2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.Comment: 40 pages, 2 figures v2: author email addresses and affiliations adde

    Contact Manifolds, Contact Instantons, and Twistor Geometry

    Full text link
    Recently, Kallen and Zabzine computed the partition function of a twisted supersymmetric Yang-Mills theory on the five-dimensional sphere using localisation techniques. Key to their construction is a five-dimensional generalisation of the instanton equation to which they refer as the contact instanton equation. Subject of this article is the twistor construction of this equation when formulated on K-contact manifolds and the discussion of its integrability properties. We also present certain extensions to higher dimensions and supersymmetric generalisations.Comment: v3: 28 pages, clarifications and references added, version to appear in JHE

    Association between 8 P-glycoprotein (MDR1/ABCB1) gene polymorphisms and antipsychotic drug-induced hyperprolactinaemia

    Get PDF
    INTRODUCTION: Hyperprolactinaemia, a common adverse effect of antipsychotic drugs, is primarily linked to blockade of dopamine D2 receptors in the pituitary gland. Certain antipsychotic drugs, such as, for example risperidone and paliperidone, are more likely to induce hyperprolactinaemia compared to others. This effect is probably caused by a relatively high blood/brain concentration ratio, a consequence of being a substrate of P-glycoprotein. Genetic variants of P-glycoprotein with changed functional activity might influence the potential of risperidone and paliperidone to cause hyperprolactinaemia as the altered blood/brain concentration ratio would lead to a reduced therapeutic drug level within essential brain areas making dose adaptations necessary. This increases exposure of dopamine D2 receptors within the pituitary gland. AIMS: To investigate possible associations between MDR1/ABCB1 gene polymorphisms and antipsychotic drug-induced hyperprolactinaemia in Russian patients with schizophrenia and to determine possible differences between risperidone/paliperidone and other antipsychotics. METHODS: In total, 446 patients with schizophrenia were included from 3 psychiatric hospitals in Siberia. Blood samples were obtained in a cross-sectional study design for DNA extraction and prolactin measurement. Associations between hyperprolactinaemia and 8 MDR1/ABCB1 gene-polymorphisms were assessed using logistic regression analysis accounting for covariates. The analysis was repeated in a patient subgroup using risperidone or paliperidone. RESULTS: We did not observe an association between any of the 8 single nucleotide polymorphisms and the prevalence of antipsychotic-induced hyperprolactinaemia in the total patient population. However, in the risperidone/paliperidone subgroup, the single nucleotide polymorphism rs2032582 (G2677T) was found to be negatively associated with risperidone/paliperidone-induced hyperprolactinaemia. CONCLUSION: This study revealed a significant association between the ABCB1 gene polymorphism rs2032582 (G2677T) and risperidone/paliperidone-induced hyperprolactinaemia

    Increased Diacylglycerols Characterize Hepatic Lipid Changes in Progression of Human Nonalcoholic Fatty Liver Disease; Comparison to a Murine Model

    Get PDF
    The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and progression to cirrhosis. While differences in liver lipids between disease states have been reported, precise composition of phospholipids and diacylglycerols (DAG) at a lipid species level has not been previously described. The goal of this study was to characterize changes in lipid species through progression of human NAFLD using advanced lipidomic technology and compare this with a murine model of early and advanced NAFLD.Utilizing mass spectrometry lipidomics, over 250 phospholipid and diacylglycerol species (DAGs) were identified in normal and diseased human and murine liver extracts.Significant differences between phospholipid composition of normal and diseased livers were demonstrated, notably among DAG species, consistent with previous reports that DAG transferases are involved in the progression of NAFLD and liver fibrosis. In addition, a novel phospholipid species (ether linked phosphatidylinositol) was identified in human cirrhotic liver extracts.Using parallel lipidomics analysis of murine and human liver tissues it was determined that mice maintained on a high-fat diet provide a reproducible model of NAFLD in regards to specificity of lipid species in the liver. These studies demonstrated that novel lipid species may serve as markers of advanced liver disease and importantly, marked increases in DAG species are a hallmark of NAFLD. Elevated DAGs may contribute to altered triglyceride, phosphatidylcholine (PC), and phosphatidylethanolamine (PE) levels characteristic of the disease and specific DAG species might be important lipid signaling molecules in the progression of NAFLD

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Ir-Catalysed Nitrous Oxide (N2O) Decomposition:Effect of Ir Particle Size and Metal–Support Interactions

    Get PDF
    The effect of the morphology of Ir particles supported on γ-Al2O3, 8 mol%Y2O3-stabilized ZrO2 (YSZ), 10 mol%Gd2O3-doped CeO2 (GDC) and 80 wt%Al2O3–10 wt%CeO2–10 wt%ZrO2 (ACZ) on their stability on oxidative conditions, the associated metal–support interactions and activity for catalytic decomposition of N2O has been studied. Supports with intermediate or high oxygen ion lability (GDC and ACZ) effectively stabilized Ir nanoparticles against sintering, in striking contrast to supports offering negligible or low oxygen ion lability (γ-Al2O3 and YSZ). Turnover frequency studies using size-controlled Ir particles showed strong structure sensitivity, de-N2O catalysis being favoured on large catalyst particles. Although metallic Ir showed some de-N2O activity, IrO2 was more active, possibly present as a superficial overlayer on the iridium particles under reaction conditions. Support-induced turnover rate modifications, resulted from an effective double layer [Oδ−–δ+](Ir) on the surface of iridium nanoparticles, via O2− backspillover from the support, were significant in the case of GDC and ACZ

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Dissecting Early Differentially Expressed Genes in a Mixture of Differentiating Embryonic Stem Cells

    Get PDF
    The differentiation of embryonic stem cells is initiated by a gradual loss of pluripotency-associated transcripts and induction of differentiation genes. Accordingly, the detection of differentially expressed genes at the early stages of differentiation could assist the identification of the causal genes that either promote or inhibit differentiation. The previous methods of identifying differentially expressed genes by comparing different cell types would inevitably include a large portion of genes that respond to, rather than regulate, the differentiation process. We demonstrate through the use of biological replicates and a novel statistical approach that the gene expression data obtained without prior separation of cell types are informative for detecting differentially expressed genes at the early stages of differentiation. Applying the proposed method to analyze the differentiation of murine embryonic stem cells, we identified and then experimentally verified Smarcad1 as a novel regulator of pluripotency and self-renewal. We formalized this statistical approach as a statistical test that is generally applicable to analyze other differentiation processes
    corecore