56 research outputs found

    Visualization of Nd3+-doped Laf3 Nanoparticles For Near Infrared Bioimaging via Upconversion Luminescence at Multiphoton Excitation Microscopyvisualization of Nd3+-doped Laf3 Nanoparticles For Near Infrared Bioimaging via Upconversion Luminescence at Multiphoton Excitation Microscopy

    Get PDF
    Recent developments in the field of biophotonics facilitate the raise of interest to inorganic nanoparticles (NPs) doped with Nd 3+ ions, because of their near-infrared (NIR) absorption. These NPs are interesting bioimaging probes for deep tissue visualization, while they can also act as local thermometers in biological tissues. Despite the good possibilities for visualization of NPs with Nd 3+ ions in NIR spectral range, difficulties arise when studying the cellular uptake of these NPs using commercially available fluorescence microscopy systems, since the selection of suitable luminescence detectors is limited. However, Nd 3+ ions are able to convert NIR radiation into visible light, showing upconversion properties. In this paper we found optimal parameters to excite upconversion luminescence of Nd 3+ :LaF 3 NPs in living cells and to compare the distribution of the NPs inside the cell culture of human macrophages THP-1 obtained by two methods. Firstly, by detecting the upconversion luminescence of the NPs in VIS under NIR multiphoton excitation using laser scanning confocal microscopy and secondly, using transmission electron microscopy

    The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer

    Get PDF
    Measurements of atmospheric turbulence made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are used to determine the limits of applicability of Monin-Obukhov similarity theory (in the local scaling formulation) in the stable atmospheric boundary layer. Based on the spectral analysis of wind velocity and air temperature fluctuations, it is shown that, when both of the gradient Richardson number, Ri, and the flux Richardson number, Rf, exceed a 'critical value' of about 0.20 - 0.25, the inertial subrange associated with the Richardson-Kolmogorov cascade dies out and vertical turbulent fluxes become small. Some small-scale turbulence survives even in this supercritical regime, but this is non-Kolmogorov turbulence, and it decays rapidly with further increasing stability. Similarity theory is based on the turbulent fluxes in the high-frequency part of the spectra that are associated with energy-containing/flux-carrying eddies. Spectral densities in this high-frequency band diminish as the Richardson-Kolmogorov energy cascade weakens; therefore, the applicability of local Monin-Obukhov similarity theory in stable conditions is limited by the inequalities Ri < Ri_cr and Rf < Rf_cr. However, it is found that Rf_cr = 0.20 - 0.25 is a primary threshold for applicability. Applying this prerequisite shows that the data follow classical Monin-Obukhov local z-less predictions after the irrelevant cases (turbulence without the Richardson-Kolmogorov cascade) have been filtered out.Comment: Boundary-Layer Meteorology (Manuscript submitted: 16 February 2012; Accepted: 10 September 2012

    Psychopathology predicts the outcome of medial branch blocks with corticosteroid for chronic axial low back or cervical pain: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comorbid psychopathology is an important predictor of poor outcome for many types of treatments for back or neck pain. But it is unknown if this applies to the results of medial branch blocks (MBBs) for chronic low back or neck pain, which involves injecting the medial branch of the dorsal ramus nerves that innervate the facet joints. The objective of this study was to determine whether high levels of psychopathology are predictive of pain relief after MBB injections in the lumbar or cervical spine.</p> <p>Methods</p> <p>This was a prospective cohort study. Consecutive patients in a pain medicine practice undergoing MBBs of the lumbar or cervical facets with corticosteroids were recruited to participate. Subjects were selected for a MBB based on operationalized selection criteria and the procedure was performed in a standardized manner. Subjects completed the Brief Pain Inventory (BPI) and the Hospital Anxiety and Depression Scale (HADS) just prior to the procedure and at one-month follow up. Scores on the HADS classified the subjects into three groups based on psychiatric symptoms, which formed the primary predictor variable: <it>Low</it>, <it>Moderate</it>, or <it>High </it>levels of psychopathology. The primary outcome measure was the percent improvement in average daily pain rating one-month following an injection. Analysis of variance and chi-square were used to analyze the analgesia and functional rating differences between groups, and to perform a responder analysis.</p> <p>Results</p> <p>Eighty six (86) subjects completed the study. The <it>Low </it>psychopathology group (n = 37) reported a mean of 23% improvement in pain at one-month while the <it>High </it>psychopathology group (n = 29) reported a mean worsening of -5.8% in pain (p < .001). Forty five percent (45%) of the <it>Low </it>group had at least 30% improvement in pain versus 10% in the <it>High </it>group (p < .001). Using an analysis of covariance, no baseline demographic, social, or medical variables were significant predictors of pain improvement, nor did they mitigate the effect of psychopathology on the outcome.</p> <p>Conclusion</p> <p>Psychiatric comorbidity is associated with diminished pain relief after a MBB injection performed with steroid at one-month follow-up. These findings illustrate the importance of assessing comorbid psychopathology as part of a spine care evaluation.</p

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm(-2)) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.An international team of researchers finds high potential for improving climate projections by a more comprehensive treatment of largely ignored Arctic vegetation types, underscoring the importance of Arctic energy exchange measuring stations.Peer reviewe

    The SHiP experiment at the proposed CERN SPS Beam Dump Facility

    Get PDF
    The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end
    corecore