4,802 research outputs found
A circularly polarized stacked electromagnetically coupled patch antenna
In this communication, we present a high-performance circularly polarized (CP) stacked electromagnetically coupled patch antenna and its subarray at X band. In addition to low boresight axial-ratios, the subarray has measured 10-dB impedance and 3-dB axial-ratio bandwidths of 25.6% and 23.5% respectively as compared to the measured 20.2% and 8.0% for a single element. The mutual coupling for this element is shown to be lower than other reported stacked patch antennas and obtained a gain (> 10 dbic) bandwidth of 23.5%. The calculated antenna efficiency is 89% around center frequency for the single element whereas the subarray has an overall efficiency of >71% (-1.5 dB) over 21% bandwidth
An Evidence Quality Assessment Model for Cyber Security Policymaking
A key factor underpinning a state’s capacity to respond to cyber security policy challenges is the quality of evidence that supports decision making. As part of this process, policy advisers, essentially a diverse group that includes everyone from civil servants to elected policy makers, are required to assess evidence from a mix of sources. In time-critical scenarios where relevant expertise is limited or not available, assessing threats, risk and proportionate response based on official briefings, academic sources and industry threat reports can be very challenging. This chapter presents a model for assessing the quality of evidence used in policymaking. The utility of the model is illustrated using a sample of evidence sources and it is demonstrated how different attributes may be used for comparing evidence quality. The ultimate goal is to help resolve potential conflicts and weigh findings and opinions in a systematic manner
Broadband on-chip polarization mode splitters in lithium niobate integrated adiabatic couplers
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. We report, to the best of our knowledge, the first broadband polarization mode splitter (PMS) based on the adiabatic light passage mechanism in the lithium niobate (LiNbO3) waveguide platform. A broad bandwidth of ~140 nm spanning telecom S, C, and L bands at polarization-extinction ratios (PER) of >20 dB and >18 dB for the TE and TM polarization modes, respectively, is found in a five-waveguide adiabatic coupler scheme whose structure is optimized by an adiabaticity engineering process in titanium-diffused LiNbO3 waveguides. When the five-waveguide PMS is integrated with a three-waveguide “shortcut to adiabaticity” structure, we realize a broadband, high splitting-ratio (ηc) mode splitter for spatial separation of TE- (H-) polarized pump (700-850 nm for ηc>99%), TM- (V-) polarized signal (1510-1630 nm for ηc>97%), and TE- (H-) polarized idler (1480-1650 nm for ηc>97%) modes. Such a unique integrated-optical device is of potential for facilitating the on-chip implementation of a pump-filtered, broadband tunable entangled quantum-state generator
Broadband On-Chip Adiabatic-Coupling Polarization Mode Splitters in Lithium Niobate Waveguides
© 2019 The Author(s) 2019 OSA. We report the first broadband (>120 nm at >97% splitting efficiency for both polarization modes) polarization mode-splitter in LiNbO3 adiabatic light-passage configuration. This device can facilitate the on-chip implementation of pump-filtered, broadband tunable Bell-state generators
On-chip adiabatic couplers for broadband quantum-polarization state preparation
© 2018 OSA. We present a unique wavelength-dependent polarization splitter based on asymmetric adiabatic couplers designed for integration with type-II spontaneous parametric-down-conversion sources. The system can be used for preparing different quantum polarization-path states over a broad band
Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation
© 2017 The Author(s). Spontaneous parametric down-conversion (SPDC) is a widely used method to generate entangled photons, enabling a range of applications from secure communication to tests of quantum physics. Integrating SPDC on a chip provides interferometric stability, allows to reduce a physical footprint, and opens a pathway to true scalability. However, dealing with different photon polarizations and wavelengths on a chip presents a number of challenging problems. In this work, we demonstrate an on-chip polarization beam-splitter based on z-cut titanium-diffused lithium niobate asymmetric adiabatic couplers (AAC) designed for integration with a type-II SPDC source. Our experimental measurements reveal unique polarization beam-splitting regime with the ability to tune the splitting ratios based on wavelength. In particular, we measured a splitting ratio of 17 dB over broadband regions (>60 nm) for both H-and V-polarized lights and a specific 50%/50% splitting ratio for a cross-polarized photon pair from the AAC. The results show that such a system can be used for preparing different quantum polarization-path states that are controllable by changing the phase-matching conditions in the SPDC over a broad band. Furthermore, we propose a fully integrated electro-optically tunable type-II SPDC polarization-path-entangled state preparation circuit on a single lithium niobate photonic chip
Predictors of failed attendances in a multi-specialty outpatient centre using electronic databases.
BACKGROUND: Failure to keep outpatient medical appointments results in inefficiencies and costs. The objective of this study is to show the factors in an existing electronic database that affect failed appointments and to develop a predictive probability model to increase the effectiveness of interventions. METHODS: A retrospective study was conducted on outpatient clinic attendances at Tan Tock Seng Hospital, Singapore from 2000 to 2004. 22864 patients were randomly sampled for analysis. The outcome measure was failed outpatient appointments according to each patient's latest appointment. RESULTS: Failures comprised of 21% of all appointments and 39% when using the patients' latest appointment. Using odds ratios from the mutliple logistic regression analysis, age group (0.75 to 0.84 for groups above 40 years compared to below 20 years), race (1.48 for Malays, 1.61 for Indians compared to Chinese), days from scheduling to appointment (2.38 for more than 21 days compared to less than 7 days), previous failed appointments (1.79 for more than 60% failures and 4.38 for no previous appointments, compared with less than 20% failures), provision of cell phone number (0.10 for providing numbers compared to otherwise) and distance from hospital (1.14 for more than 14 km compared to less than 6 km) were significantly associated with failed appointments. The predicted probability model's diagnostic accuracy to predict failures is more than 80%. CONCLUSION: A few key variables have shown to adequately account for and predict failed appointments using existing electronic databases. These can be used to develop integrative technological solutions in the outpatient clinic
- …