151 research outputs found

    Dynamic control of a single-server system with abandonments

    Get PDF
    In this paper, we discuss the dynamic server control in a two-class service system with abandonments. Two models are considered. In the first case, rewards are received upon service completion, and there are no abandonment costs (other than the lost opportunity to gain rewards). In the second, holding costs per customer per unit time are accrued, and each abandonment involves a fixed cost. Both cases are considered under the discounted or average reward/cost criterion. These are extensions of the classic scheduling question (without abandonments) where it is well known that simple priority rules hold. The contributions in this paper are twofold. First, we show that the classic c-μ rule does not hold in general. An added condition on the ordering of the abandonment rates is sufficient to recover the priority rule. Counterexamples show that this condition is not necessary, but when it is violated, significant loss can occur. In the reward case, we show that the decision involves an intuitive tradeoff between getting more rewards and avoiding idling. Secondly, we note that traditional solution techniques are not directly applicable. Since customers may leave in between services, an interchange argument cannot be applied. Since the abandonment rates are unbounded we cannot apply uniformization-and thus cannot use the usual discrete-time Markov decision process techniques. After formulating the problem as a continuous-time Markov decision process (CTMDP), we use sample path arguments in the reward case and a savvy use of truncation in the holding cost case to yield the results. As far as we know, this is the first time that either have been used in conjunction with the CTMDP to show structure in a queueing control problem. The insights made in each model are supported by a detailed numerical study. © 2010 Springer Science+Business Media, LLC

    Fermion-Boson Interactions and Quantum Algebras

    Get PDF
    Quantum Algebras (q-algebras) are used to describe interactions between fermions and bosons. Particularly, the concept of a su_q(2) dynamical symmetry is invoked in order to reproduce the ground state properties of systems of fermions and bosons interacting via schematic forces. The structure of the proposed su_q(2) Hamiltonians, and the meaning of the corresponding deformation parameters, are discussed.Comment: 20 pages, 10 figures. Physical Review C (in press

    Staffing decisions for heterogeneous workers with turnover

    Full text link
    In this paper we consider a firm that employs heterogeneous workers to meet demand for its product or service. Workers differ in their skills, speed, and/or quality, and they randomly leave, or turn over. Each period the firm must decide how many workers of each type to hire or fire in order to meet randomly changing demand forecasts at minimal expense. When the number of workers of each type can by continuously varied, the operational cost is jointly convex in the number of workers of each type, hiring and firing costs are linear, and a random fraction of workers of each type leave in each period, the optimal policy has a simple hire- up-to/fire-down-to structure. However, under the more realistic assumption that the number of workers of each type is discrete, the optimal policy is much more difficult to characterize, and depends on the particular notion of discrete convexity used for the cost function. We explore several different notions of discrete convexity and their impact on structural results for the optimal policy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45844/1/186_2005_Article_33.pd

    Altered oscillatory brain dynamics after repeated traumatic stress

    Get PDF
    Kolassa I-T, Wienbruch C, Neuner F, et al. Altered oscillatory brain dynamics after repeated traumatic stress. BMC Psychiatry. 2007;7(1): 56.BACKGROUND: Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. METHODS: Using magnetoencephalographic (MEG-based) source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD) in comparison to 97 controls. RESULTS: PTSD patients showed elevated production of focally generated slow waves (1-4 Hz), particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. CONCLUSION: The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala

    Fact or Factitious? A Psychobiological Study of Authentic and Simulated Dissociative Identity States

    Get PDF
    BACKGROUND: Dissociative identity disorder (DID) is a disputed psychiatric disorder. Research findings and clinical observations suggest that DID involves an authentic mental disorder related to factors such as traumatization and disrupted attachment. A competing view indicates that DID is due to fantasy proneness, suggestibility, suggestion, and role-playing. Here we examine whether dissociative identity state-dependent psychobiological features in DID can be induced in high or low fantasy prone individuals by instructed and motivated role-playing, and suggestion. METHODOLOGY/PRINCIPAL FINDINGS: DID patients, high fantasy prone and low fantasy prone controls were studied in two different types of identity states (neutral and trauma-related) in an autobiographical memory script-driven (neutral or trauma-related) imagery paradigm. The controls were instructed to enact the two DID identity states. Twenty-nine subjects participated in the study: 11 patients with DID, 10 high fantasy prone DID simulating controls, and 8 low fantasy prone DID simulating controls. Autonomic and subjective reactions were obtained. Differences in psychophysiological and neural activation patterns were found between the DID patients and both high and low fantasy prone controls. That is, the identity states in DID were not convincingly enacted by DID simulating controls. Thus, important differences regarding regional cerebral bloodflow and psychophysiological responses for different types of identity states in patients with DID were upheld after controlling for DID simulation. CONCLUSIONS/SIGNIFICANCE: The findings are at odds with the idea that differences among different types of dissociative identity states in DID can be explained by high fantasy proneness, motivated role-enactment, and suggestion. They indicate that DID does not have a sociocultural (e.g., iatrogenic) origin

    Altered amygdala activation during face processing in Iraqi and Afghanistani war veterans

    Get PDF
    Abstract Background Exposure to combat can have a significant impact across a wide array of domains, and may manifest as post-traumatic stress disorder (PTSD), a debilitating mental illness that is associated with neural and affective sequelae. This study tested the hypothesis that combat-exposed individuals with and without PTSD, relative to healthy control subjects with no history of PTSD or combat exposure, would show amygdala hyperactivity during performance of a well-validated face processing task. We further hypothesized that differences in the prefrontal cortex would best differentiate the combat-exposed groups with and without PTSD. Methods Twelve men with PTSD related to combat in Operations Enduring Freedom and/or Iraqi Freedom, 12 male combat-exposed control patients with a history of Operations Enduring Freedom and/or Iraqi Freedom combat exposure but no history of PTSD, and 12 healthy control male patients with no history of combat exposure or PTSD completed a face-matching task during functional magnetic resonance imaging. Results The PTSD group showed greater amygdala activation to fearful versus happy faces than both the combat-exposed control and healthy control groups. Both the PTSD and the combat-exposed control groups showed greater amygdala activation to all faces versus shapes relative to the healthy control group. However, the combat-exposed control group relative to the PTSD group showed greater prefrontal/parietal connectivity with the amygdala, while the PTSD group showed greater connectivity with the subgenual cingulate. The strength of connectivity in the PTSD group was inversely related to avoidance scores. Conclusions These observations are consistent with the hypothesis that PTSD is associated with a deficiency in top-down modulation of amygdala activation by the prefrontal cortex and shows specific sensitivity to fearful faces

    Context-Dependent Encoding of Fear and Extinction Memories in a Large-Scale Network Model of the Basal Amygdala

    Get PDF
    The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories
    • …
    corecore