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Abstract In this paper, we discuss the dynamic server control in a two-class service
system with abandonments. Two models are considered. In the first case, rewards are
received upon service completion, and there are no abandonment costs (other than the
lost opportunity to gain rewards). In the second, holding costs per customer per unit
time are accrued, and each abandonment involves a fixed cost. Both cases are consid-
ered under the discounted or average reward/cost criterion. These are extensions of
the classic scheduling question (without abandonments) where it is well known that
simple priority rules hold.

The contributions in this paper are twofold. First, we show that the classic c–μ

rule does not hold in general. An added condition on the ordering of the abandonment
rates is sufficient to recover the priority rule. Counterexamples show that this condi-
tion is not necessary, but when it is violated, significant loss can occur. In the reward
case, we show that the decision involves an intuitive tradeoff between getting more
rewards and avoiding idling. Secondly, we note that traditional solution techniques
are not directly applicable. Since customers may leave in between services, an inter-
change argument cannot be applied. Since the abandonment rates are unbounded we
cannot apply uniformization—and thus cannot use the usual discrete-time Markov
decision process techniques. After formulating the problem as a continuous-time
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Markov decision process (CTMDP), we use sample path arguments in the reward
case and a savvy use of truncation in the holding cost case to yield the results. As far
as we know, this is the first time that either have been used in conjunction with the
CTMDP to show structure in a queueing control problem. The insights made in each
model are supported by a detailed numerical study.

Keywords Priority rules · Dynamic programming · Control of queues

Mathematics Subject Classification (2000) 90B36 · 60K25 · 90C40

1 Introduction

In many service systems, a server (or servers) is faced with the task of serving impa-
tient customers. While one may attempt to implement methods to decrease levels of
impatience, at the end of the day, a fundamental decision that must be made at any
point in time is: given a particular cost/reward structure and any information about
the impatience of customers, where should the server direct its effort? In this paper
we provide models that are seemingly simple extensions of classic scheduling prob-
lems to include customer impatience. Our results suggest that the server may need to
weigh the relative costs/benefits of avoiding idleness (by letting too many customers
abandon) against short-term revenue maximization/cost minimization concerns. The
models that we consider consist of independent, Poisson arrival streams for each class
of customer. There is a single server to serve both classes. Service times are expo-
nentially distributed with rates that are independent of the customer’s class. To this
basic setup we add that all customers may abandon after an exponentially distributed
period of time, with the abandonment rates allowed to be class dependent. Our goal
is to provide an optimal server assignment policy, which we do under two settings:

1. For each customer successfully completed, a class-dependent reward is received.
2. Each queue has (linear) holding costs, and there is a class-dependent penalty for

each customer that abandons.

In each case we consider the problem of maximizing expected discounted or average
rewards or minimizing expected discounted or average costs over an infinite horizon.

It is well known that for the second case above, if there are no abandonments, then
the c–μ rule is optimal (see [7]). In this paper, we show that this is not always true
when abandonments are considered. In fact, there is a tension between losing future
workload through abandonments (and thus creating excessive idling) and myopically
reducing costs (through the c–μ rule). For appropriate combinations of parameters,
there is no tension between these two factors, in which case an appropriately modi-
fied version of a c–μ rule is optimal. We identify such combinations. Note that such
a tension cannot be captured in other approaches to server control. One can think of
the problems of server assignment as generally being handled by examining three
different regimes.

1. Overloaded regime. Here, a fluid model approach is applicable. For our model,
Atar et al. [6] show that a form of c–μ rule is indeed optimal. In a system with
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many customer classes and a single server, a simple rule that prioritizes the class
with the largest value of the product of the holding cost and service rate divided
by the abandonment rate is shown to be asymptotically optimal in minimizing the
long-run average holding cost. In this case, there is always work for the server to
do, so there is no need to limit server idleness.

2. Critically loaded regime. A diffusion model approach is applicable. References
for such an approach are Ghamami and Ward [10], Harrison and Zeevi [13], and
Tezcan and Dai [21]. All of these formulate the solution to a diffusion control
problem which yields priority policies under conditions similar to those developed
in our approach.

3. Underloaded regime. This is the regime of our analysis. It is not clear that any
asymptotic approach is appropriate. As mentioned above, analyzing this model
brings in the issue of server idleness and the resulting tension with cost reduction.
Our work is the first that we are aware of on systems with abandonments in this
regime.

A combination of the insights developed by these three different approaches should
provide a clear(er) view on how to control a server faced with abandoning customers.

In addition to the above references, there are a few other related works. To put into
context the issue of abandonments in call centre models, the reader should consult the
comprehensive surveys of Aksin et al. [1] and Gans et al. [8]. Related work includes
that of Argon et al. [2], who show that for a clearing system with abandonments, the
policy that minimizes the number of abandonments is that which serves jobs with
the shortest lifetime and shortest service time (assuming that they can be ordered
this way). The performance of strict priority policies is studied in Iravani and Bal-
cıog̃lu [14], but no optimality results are obtained. In [22, 23] Ward and Glynn study
single-class systems with abandonments. They show that under appropriate distribu-
tional assumptions, G/G/1 queues with balking and/or reneging can be approximated
(i.e., there is appropriate convergence in heavy traffic) with a regulated Ornstein–
Uhlenbeck process. While in our work the only possibilities after arrival are that a
customer is either served or abandons, there is a line of work that attempts to com-
pensate for potential abandonments in other manners. In [15] Koçag̃a and Ward study
an admission control problem for a multiserver queue with a single class of customers
who may abandon. In Armony et al. [5] customers are provided with delay estimates
to influence their behavior, while in Armony and Maglaras [3, 4] a call-back option
is proposed to allow potential abandonments to be contacted at a future point in time
(when presumably servers are less busy). Note that their approaches and ours can be
seen to be complementary.

The methodology that we use is that of Markov Decision Processes. We see our
work as having two significant contributions in this area.

1. Due to the abandoning customers, uniformization (cf. [16]) is not possible (tran-
sition rates are unbounded). Thus we do our analysis in continuous time to allow
us to deal with the unbounded rates (cf. [12]). In addition to showing how one can
handle unbounded rates, we see novelty in using a continuous-time framework to
show structural results.

2. In the course of our analysis, we truncate a multidimensional state space and let
the truncation level go to infinity. Not only is this limiting approach of interest, we
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show that if truncation is done in a smart manner, analysis is greatly simplified (or
goes from intractable to tractable). For related work on this, see [9].

In addition to our analytic results, we supplement our work with several numerical
studies that show that the price of not taking into account abandonment rates can be
significant. These studies also suggest relative ranges of parameters (in particular,
abandonment rates and either rewards or costs, according to the model), for which
looking beyond a c–μ rule can lead to significant improvements.

The rest of the paper is organized as follows: a complete description of the queue-
ing dynamics, optimality criterion and a proof that we can restrict attention to non-
idling policies are shown in Sect. 2. The optimal control in both the reward and
holding cost models is covered in Sect. 3. A detailed numerical study is provided
in Sect. 4, while conclusions and some suggestions for future work are contained
in Sect. 5.

2 Model and preliminaries

In this section we define the queueing dynamics, then discuss two criteria that we
use for design; the first is one in which a fixed (type-dependent) reward is received
for each customer successfully completed, and we term this the reward model. The
second considers a combination of holding costs and penalties for each customer
that abandons and is called the holding cost model. In each case, we show that it is
sufficient to restrict attention to nonidling policies. Finally, we give the optimality
equations for both criteria and show that a solution exists in each case.

2.1 Queueing dynamics and optimality criteria

Suppose that two stations are served by a single server. Customer arrivals to stations 1
and 2 occur according to independent Poisson processes with rates λ1 and λ2, respec-
tively. We will also refer to arrivals to station i as class i customers. Customer service
requirements are probabilistically the same in the sense that they are exponential with
rate 1. Customers at station 1 (2) have limited patience and are only willing to wait an
exponentially distributed amount of time with rate β1 > 0 (β2 > 0). That is to say that
the abandonment rate in station 1 is iβ1 when there are i customers there. Service
is preemptive, and customers in service may abandon. A priori (since the transition
rates are unbounded) we are not assured that each Markov policy, say π , yields a
regular Markov process. For more information along these lines, please see [11] or
the comments on p. 187 in [12]. Regularity is guaranteed by showing that for the
current models, Assumption A of the Appendix holds.

Suppose that the state space is X = {(i, j) : i, j ∈ Z
+}, where i (j ) represents the

current number of customers at station 1 (2). Let N(t) be a counting process that
counts the number of decision epochs by time t , and σn represent the time of the nth
epoch. We seek a policy that describes where to place the server based on the current
state and potentially the history of states and actions taken; a nonanticipating policy.
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The finite horizon, discounted expected reward or cost (depending on the model) for
a nonanticipating policy π is

vπ
α,t (i, j) = E

π
(i,j)

N(t)∑

n=0

e−ασnk(Xn, an) +
∫ t

0

[
e−αs

E
π
(i,j)

[
h1Q1(s) + h2Q2(s)

]]
ds,

where Qm(s) is the number of customers at station m, m = 1,2, and Xn and an

represent the state of the system and the type of event seen at the time of the
nth decision, respectively. The function k(·, ·) denotes the fixed reward or cost de-
pending on which model is under consideration. That is to say that in the rewards
model h1 = h2 = 0 and if σn represents a service completion at station �, then
k(Xn, an) = R�. In the holding cost model if σn represents an abandonment from sta-
tion �, then k(Xn, an) = P� (it is zero otherwise). For α > 0, the infinite-horizon dis-
counted expected cost under policy π is vπ

α (i, j) := limt→∞ vπ
α,t (i, j). The long-run

average reward (cost) rate is ρπ(i, j) := lim inft→∞
vπ

0,t (i,j)

t
(lim supt→∞

vπ
0,t (i,j)

t
).

Under either optimality criterion in the rewards model, we seek a policy π∗ such that
wπ∗

(i, j) = supπ∈Π wπ(i, j), where Π is the set of all nonanticipating policies, and
w = vα or ρ. There is the obvious analogue in the holding cost model.

We end this section with the following preliminary result. It states the intuitive
observation that it is better to have more customers in the system in the reward model
and less in the system in the holding cost model. The proof is simple and is omitted
for brevity.

Proposition 2.1 Let y = vα or vα,t (with α ≥ 0 or α > 0) depending on the optimal-
ity criterion. For either the reward or holding cost model, the following inequalities
hold:

1. y(i, j + 1) ≥ y(i, j),
2. y(i + 1, j) ≥ y(i, j),

where in the finite-horizon case the result holds for all t ≥ 0.

2.2 Optimality of nonidling policies

In this section, we show that it suffices to consider only nonidling policies.

Proposition 2.2 In either the reward or holding cost model, and under the finite
horizon discounted cost criterion for any fixed and finite t ≥ 0 and α ≥ 0, there exists
an optimal policy that does not idle except when the system is empty.

Proof We show the result for the reward model by showing how one can construct a
nonidling policy that dominates one that idles. This is done via a sample path argu-
ment. The holding cost model is analogous (and is in fact simpler). Suppose that we
start two processes on the same probability space, each starting in state (i, j) with
i ≥ 1. Suppose that Process 1 uses a policy φ that initially idles the server. Process 2
uses a policy φ̃ that has the server working at station 1. If no events occur before
the end of the horizon, there is no difference in the rewards. Similarly, if Process 1
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begins to work again before Process 2 has a service completion, assume that both
processes use the same policy thereafter and there is no difference in the expected
reward stream.

Suppose now that Process 2 completes a service before the time horizon ends (at
time, say, x) and before Process 1 begins working again. The difference in the total

rewards is v
φ
α,t−x(i

′, j ′) − R1 − v
φ̃
α,t−x(i

′ − 1, j ′) for some state (i′, j ′). Note that
this leaves Process 1 with one more customer that may abandon from station 1 than
Process 2. From this point on φ̃ uses exactly the same allocation decision as φ until
one of three events occurs; the end of the horizon, an extra abandonment in Process 1
(not seen by Process 2), or Process 2 empties station 1 and φ calls for Process 1 to
work there. If either of the first two events occurs, the remaining difference in rewards
is zero, and Process 2 has received a higher reward than Process 1. That is, φ cannot
be optimal. If the third event occurs, φ̃ idles the server until the two processes couple
(by abandonment or service completion) or φ moves the server to station 2. If there
is an extra service seen by Process 1, it receives an extra reward (R1), and the total
rewards coincide (modulo the discounting). Since in each case, the rewards under φ̃

are higher than that under φ, the result follows. �

Since Proposition 2.2 holds for any t , the fact that we can restrict attention to
nonidling policies under any of the criteria holds trivially. In the remainder of the
paper, we consider only this class of policies.

Remark 2.3 It should be noted that Proposition 2.2 presupposes the existence of an
optimal policy for the finite-horizon problem. It is a simple task to show that this is
the case (for any fixed t) by applying the results of Theorem 3.1 of [18] with w as
defined in Lemma 6.1 below. In the interest of brevity, we have omitted the details
for the finite-horizon case. The infinite-horizon cases are included in the Appendix.

2.3 The optimality equations

Let d(i, j) := λ1 + λ2 + μ1{(i,j) �=(0,0)} + iβ1 + jβ2. The rate at which transitions
occur when the system is in state (i, j) and the server is working on a customer is
d(i, j). Since d(i, j) is unbounded in the state space, the decision problem defined by
either the rewards or holding cost models is not uniformizable. In short, this implies
that there is not the typical discrete-time equivalent to the continuous-time problem
posed. For a real-valued function f on X, define the following mappings:

Rf (i, j) = λ1f (i + 1, j) + λ2f (i, j + 1) + iβ1f (i − 1, j) + jβ2f (i, j − 1)

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μmax{R1 + f (i − 1, j),R2 + f (i, j − 1)} i, j ≥ 1,

μ[R1 + f (i − 1, j)] i ≥ 1, j = 0,

μ[R2 + f (i, j − 1)] j ≥ 1, i = 0,

0 (i, j) = (0,0),
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and

Hf (i, j) = i(h1 + β1P1) + j (h2 + β2P2) + λ1f (i + 1, j) + λ2f (i, j + 1)

+ iβ1f (i − 1, j) + jβ2f (i, j − 1)

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μmin{f (i − 1, j), f (i, j − 1)} i, j ≥ 1,

μf (i − 1, j) i ≥ 1, j = 0,

μf (i, j − 1) j ≥ 1, i = 0,

0 (i, j) = (0,0).

In each case, the α-discounted reward (resp. cost) optimality equations are defined as
(α + d(i, j))uα(i, j) = Ouα(i, j), where O = R (resp. H). We refer to these equa-
tions as the DROE or the DCOE depending on the problem under consideration.
Similarly, the average reward or cost optimality equations (AROE or ACOE) are de-
fined by d(i, j)u(i, j) + g = Ou(i, j), where O = R (resp. H). The function u(i, j)

is called a relative value function, and g is the optimal average cost. The next two
results state that in each problem and under each criterion, the optimality equations
have a solution. The proofs can be found in the Appendix.

Theorem 2.4 Suppose α > max{β1, β2} and let O represent the mapping R or H
depending on the reward or holding cost model. The following hold:

1. There exists deterministic policies {fn,n ≥ 0} obtaining the maximum/minimum
in (α + d(i, j))un+1,α := Oun,α (where u0,α = 0).

2. The function u∗
α := limn→∞ un,α is a solution of the discounted reward/cost opti-

mality equations and u∗
α = vα .

3. There exist deterministic stationary policies f ∗
α attaining the maximum/minimum

in the discounted reward/cost optimality equations.

Theorem 2.5 Let O represent the mapping R or H depending on the reward or
holding cost model. The following hold:

1. There exists a solution (g∗, u) of the average reward/cost optimality equations.
Moreover, g∗ is equal to the optimal expected average reward, ρ∗, and u is unique
up to additive constants. That is, g∗ = ρ∗(x) for all x ∈ X.

2. A deterministic stationary policy is average reward/cost optimal if and only if it
achieves the maximum/minimum in the average reward/cost optimality equations.

The results of Theorems 2.4 and 2.5 imply, for example, that in the discounted
reward model, it is optimal to serve at station 1 if R1 − R2 + uα(i − 1, j) −
uα(i, j − 1) ≥ 0, while in the holding cost model it is optimal to serve station 1 when
uα(i − 1, j) ≤ uα(i, j − 1). There is the obvious analogue in the average case. Just as
in the discrete-time case, a solution to the average reward/cost optimality equations
(g,u) is such that g is the optimal average reward/cost and u is called a relative value
function. The difference u(x) − u(y) represents the difference in total reward earned
by an optimal policy that starts in states x and y, respectively. In the next several
sections we discuss when it is optimal to prioritize class 1 or 2 whenever possible.
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3 Optimal control

As mentioned in the previous section, the optimality equations (discounted or av-
erage rewards or costs) can be used to obtain the structure of an optimal policy by
comparing the values (or relative values) when the system starts in different states.
In problems that are uniformizable (where d(i, j) can be replaced with a constant),
the usual method for doing this comparison is to compare these values term by term.
Then using induction through the recursion (α+d(i, j))un+1,α := Oun,α inequalities
like those above are proved by taking limits. In the current study, we would like to
compare states (i − 1, j) to (i, j − 1). In general, since d(i − 1, j) �= d(i, j − 1), the
induction is much more difficult (and not doable by these authors); except of course
in the case that d(i − 1, j) = d(i, j − 1) for all i, j ≥ 1, that is, when β1 = β2. This
case is considered in the following proposition for a general (nonnegative) cost rate
function.

Proposition 3.1 Suppose β = β1 = β2 and let c((i, j), k) denote the cost rate in state
(i, j) when serving in station k = 1,2. Assume that c(·, a) is such that Assumptions A,
B, C and Lemma 6.2 (in the Appendix) hold (so that the results of Theorems 2.4 and
2.5 hold). If the following hold

1. c((i − 1, j),1) ≤ c((i, j − 1), k) for i, j ≥ 1 and k = 1,2, and
2. c((0, j),2) ≤ c((1, j − 1),1),

then

1. c((i − 1, j),1) + μuα(i − 1, j) ≤ c((i, j − 1),2) + μuα(i, j − 1) for all i, j ≥ 1,
and

2. under either the infinite-horizon discounted cost or average cost criteria, it is op-
timal to serve at station 1 except to avoid unforced idling.

Proof We show that un,α(i − 1, j) ≤ un,α(i, j − 1) for all i, j ≥ 1 and n ≥ 0. This,
combined with the assumption that c((i−1, j),1) ≤ c((i, j −1),2), yields the results
upon taking limits. Clearly, this inequality holds for n = 0. Assume that it holds for n

(which implies that it is optimal to serve at station 1 at epoch n + 1). Consider n + 1.
The optimality equations (α + d(i, j))un+1,α := Hun,α take the form (for i ≥ 2 and
j ≥ 1)

(
α + d(i − 1, j)

)
un+1,α(i − 1, j)

= λ1un,α(i, j) + λ2un,α(i − 1, j + 1) + (i − 1)βun,α(i − 2, j)

+ jβun,α(i − 1, j − 1) + c
(
(i − 1, j),1

) + μun,α(i − 2, j),

while for i, j ≥ 1,

(
α + d(i, j − 1)

)
un+1,α(i, j − 1)

= λ1un,α(i + 1, j − 1) + λ2un,α(i, j) + iβun,α(i − 1, j − 1)

+ (j − 1)βun,α(i, j − 2) + c
(
(i, j − 1),1

) + μun,α(i − 1, j − 1).
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Since d(i − 1, j) = d(i, j − 1), taking differences and combining like coefficients
yields the first statement (with un,α replacing uα) via the inductive hypothesis except
possibly when considering terms associated with abandonments. Consider only those
terms and note

(i − 1)βun,α(i − 2, j) + jβun,α(i − 1, j − 1)

− [
iβun,α(i − 1, j − 1) + (j − 1)βun,α(i, j − 2)

]

= (i − 1)β
[
un,α(i − 2, j) − un,α(i − 1, j − 1)

]

+ (j − 1)β
[
un,α(i − 1, j − 1) − un,α(i, j − 2)

]

≤ 0,

where the inequality holds by applying the inductive hypothesis twice. Now suppose
that i = 1 and j ≥ 1. The nonidling assumption yields

(
α + d(i − 1, j)

)
un+1,α(i − 1, j)

= λ1un,α(i, j) + λ2un,α(i − 1, j + 1)

+ jβun,α(i − 1, j − 1) + c
(
(i − 1, j),2

) + μun,α(i − 1, j − 1).

The expressions with coefficient μ cancel, and the induction hypothesis holds for
those related to arrivals. The last assumption on the cost function yields the result
except possibly with respect to the expressions related to abandonments. However,

jβun,α(i − 1, j − 1) − [
βun,α(i − 1, j − 1) + (j − 1)βun,α(i, j − 2)

]

= (j − 1)β
[
un,α(i − 1, j − 1) + un,α(i, j − 2)

]

≤ 0,

where again the inequality holds by the inductive hypothesis. In each case, the as-
sumptions on the cost function yield c((i − 1, j),1) + μun,α(i − 1, j) ≤
c((i, j − 1),2) + μun,α(i, j − 1) for all n and all i, j ≥ 1. Taking limits as n → ∞
yields the first result. The second result now holds for the discounted cost case by
applying the DCOE. Following the proof of Theorem 4.1 of [12], there exists a subse-
quence {α(n),n ≥ 0} such that uα(n)(i, j) − uα(n)(0,0) → u(i, j), where u satisfies
the average cost optimality equations. That is to say that there exists an optimal policy
that prioritizes station 1 under either optimality criterion as desired. �

A few notes should be made about the hypotheses of Proposition 3.1. First, in the
holding cost model presented, the conditions on the rate functions in Proposition 3.1
translate to precisely what would be expected. That is, c((i − 1, j),1) = (i − 1) ×
(h1 + βP1) + j (h2 + βP2) ≤ c((i, j − 1), k) = i(h1 + βP1) + (j − 1)(h2 + βP2)

holds if h1 + βP1 ≥ h2 + βP2. On the other hand, in the rewards model, the in-
equality R1 ≥ R2 is implied by c((i − 1, j),1) = −μR1 ≤ c((i, j − 1),2) = −μR2



72 Queueing Syst (2011) 67: 63–90

for i ≥ 2 (remember c is for costs), but the inequality is c((0, j),2) = −μR2 ≤
c((1, j − 1),1) = −μR1 would mean R2 ≥ R1. In short, the results only hold for
the case with R1 = R2. The R1 > R2 case is covered in what follows, as is the more
general holding cost model (without the assumption that β1 = β2). Finally, we note
that symmetric results hold that yield station 2 should be prioritized. We believe not
only are the next set of results of interest, but also the methodologies may be of use
for a wide range of related problems.

3.1 The rewards model

In this section we provide conditions under which a priority rule holds in the reward
model. Originally, one might conjecture that R1 ≥ R2 is sufficient to guarantee the
optimality of a rule that prioritizes station 1. The following (counter)example shows
that this is not always the case.

Example 3.2 Suppose that we have the following model inputs: λ1 = 0.1; λ2 = 0.1;
μ = 1; β1 = 0.1; β2 = 3; R1 = 2.0; R2 = 1.0. With these inputs, the average reward
of a policy that serves at station 1 (except to avoid idling) is ρ1 = 0.002809, while
the optimal policy has average reward ρ∗ = 0.003185, a 13.4% increase.

Figure 1 depicts the optimal policy for this example. Not only is it not strictly
a priority policy, but since it is nonidling, it is also nonmonotone in the number of
customers in station 1.

The following provides conditions under which it is optimal to always serve at
one station or the other (except to avoid unforced idling) and is the main result of the
section.

Theorem 3.3 Suppose β1 ≥ β2 and R1 ≥ R2. Then R1 − R2 + u(i − 1, j) −
u(i, j − 1) ≥ 0 for all i, j ≥ 1, and an optimal policy exists that always serves at
station 1, except to avoid unforced idling. By symmetry, if β2 ≥ β1 and R2 ≥ R1, then

Fig. 1 Graphical depiction of
the optimal policy for
Example 3.2
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R1 − R2 + u(i − 1, j) − u(i, j − 1) ≤ 0 for all i, j ≥ 1, and an optimal policy exists
that always serves at station 2, except to avoid unforced idling.

The proof of Theorem 3.3 is delayed until we have proved the next proposition.
Before proceeding however, consider again Example 1. Note that in the case that
R1 ≥ R2 and β2 > β1, the decision-maker has two competing objectives. First, there
is a desire to maximize rewards, and so station 1 should be prioritized. On the other
hand, if β2 is too high, all of the station 2 customers may abandon while the server is
clearing station 1; resulting in future server idleness and corresponding lost rewards.
So a balance must be struck between maximizing rewards and avoiding idleness. Both
are achieved by serving at station 1 when β1 ≥ β2.

Proposition 3.4 The following hold for any fixed t :

1. Suppose β1 ≥ β2 and R1 ≥ R2. Then R1 −R2 +uα,t (i − 1, j)−uα,t (i, j − 1) ≥ 0
for all i, j ≥ 1.

2. Suppose β2 ≥ β1 and R2 ≥ R1. Then R1 −R2 +uα,t (i − 1, j)−uα,t (i, j − 1) ≤ 0
for all i, j ≥ 1.

Proof To prove the first result, fix t and consider uα,t (i−1, j)−uα,t (i, j −1). Define
two processes on the same probability space. Process 1 starts in state (i − 1, j) and
serves in the same station as process 2, whenever possible. Process 2 starts in state
(i, j − 1) and uses an optimal policy. Since both processes are defined on the same
space, we assume that they see the same arrivals and potential services. If an arrival
is the first event at time t0 say, the relative position of the two processes remains the
same, and they each enter new states. There are now t − t0 time units remaining. We
relabel the new states as the initial states and continue with the same argument that
follows.

As for the abandonments, assume that we generate the first i −1 and the first j −1
customers in each queue so that both processes see the same abandonments. If any
of these events occur first, again, the relative positions of each process remain the
same, and we continue as before. For the remaining customer (an extra at station 1
in process 2 and an extra at station 2 in process 1), we generate a single exponential
with rate β1. If this event occurs first, then both processes see an extra abandon-
ment with probability β2

β1
. This implies that the difference in the remaining rewards is

uα,t−t0(i − 1, j − 1) − uα,t−t0(i − 1, j − 1) = 0. With probability β1−β2
β1

it generates
an abandonment in station 1 for process 2 (not seen by process 1). The remaining
rewards are uα,t−t0(i − 1, j) − uα,t−t0(i − 1, j − 1) ≥ 0, where the inequality is due
to the first result of Proposition 2.1. The assumption that R1 ≥ R2 yields the first
inequality in this case.

Consider now the services. Recall that process 2 uses the optimal policy. Assume
that process 1 serves in the same station as process 2, whenever possible. Since each
service can be constructed so that both processes see the same service times, the
relative position of each process remains the same except in the case of i − 1 = 0 and
process 2 serves at station 1. Suppose that this is the case. At this time the potentially
suboptimal policy for process 1 serves at station 2. If the service is the next event, the
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instantaneous rewards are different, and the difference in the remaining rewards is

e−α(t−t0)(R2 − R1) + uα,t−t0(0, j − 1) − uα,t−t0(0, j − 1) = e−α(t−t0)(R2 − R1).

Adding R1 − R2 yields (R1 − R2)(1 − e−α(t−t0)) ≥ 0, as desired.
Consider again uα,t (i − 1, j) − uα,t (i, j − 1) for generic i, j ≥ 1. Let p be the

probability that the processes enter states (0, j ′) and (1, j ′ − 1) for some j ′. The
previous arguments imply that uα,t (i−1, j)−uα,t (i, j −1) ≥ p(R2 −R1) ≥ R2 −R1,
where the inequality follows since R1 ≥ R2. The result is proven. The remaining
result holds by symmetry. �

Since t was arbitrary, by taking limits as t → ∞ Theorem 3.3 is immediate.
One might note that the proof of Proposition 3.4 relies on two important facts. First

that no reward or costs are accrued between events and second that the instantaneous
rewards or costs are not state dependent. Neither of these hold for the holding cost
model which is considered in the next section.

3.2 Holding costs

As an alternative to the methods of the previous section, the classic “c–μ” result was
shown using an interchange argument (cf. Varaiya and Buyokkoc [7] or Nain [17]). In
essence, an index for each station is created (the holding cost times the service rate).
The station with the highest index receives the highest priority. The argument is that
any policy that violates this priority rule can be improved by rearranging the order in
which customers are served in accordance with the index. Two processes are defined
on the same space that use the various policies. Since all customers that arrive at a
particular station will be served and served in the order in which they arrived, the two
processes can be made to couple. The process that follows the index rule drains cost
earlier and therefore minimizes the total cost. The difficulty in the current study is in
the assumption that the two processes can be made to couple. Indeed, some customers
may abandon awaiting service in one process while they have their service completed
in the other. If this happens, there is no way to guarantee the processes will couple.
In what follows, we discuss the holding cost model and what can be done to alleviate
this difficulty. The main results of this section are captured in the following theorem.
Its proof is divided into several steps.

Theorem 3.5 Suppose the following hold:

1. h1 + β1P1 ≥ (≤)h2 + β2P2,
2. β2 ≥ (≤)β1.

Then under either the infinite-horizon discounted cost or average cost criteria, there
exists an optimal policy that prioritizes station 1 (2) except to avoid unforced idling.

Our original intuition was that h1 + β1P1 ≥ h2 + β2P2 should be sufficient to
prioritize station 1. After all, this would be in line with classic results. The next ex-
ample addresses the question of necessity and sufficiency of the added inequality
β2 ≥ β1.
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Example 3.6 Suppose λ1 = 2;λ2 = 2.5;μ = 3;β1 = 0.9;β2 = 1;h1 = 1.5;
h2 = 1;P1 = 1;P2 = 0.5.

Note that h1 + β1P1 = 2.4 ≥ 1.5 = h2 + β2P2. The optimal policy (computed via
Matlab) is to work at station 1 unless there are no customers at station 1. This same
policy is optimal if we let β1 = 1.1 > β2. That is, the hypotheses of Theorem 3.5
are sufficient but not necessary. If we let β1 = 2, then h1 + β1P1 = 3.5 ≥ 1.5 =
h2 +β2P2. However, the optimal policy is to serve at station 2; following our intuition
could lead to using a priority rule that is exactly the opposite of what is optimal!

As has been alluded to, the classic methods of a sample path argument or inter-
change argument cannot be applied directly. We have also mentioned that the prob-
lem is not uniformizable so that there is not a discrete-time equivalent Markov de-
cision process. One might suggest that we could truncate the state space, making it
uniformizable, prove the results on the truncated space, and take limits as the trun-
cation level approaches infinity. This approach is also suggested by Assumption A
in the Appendix. The next example shows that care must be taken when choosing
the truncation. Suppose that each queue is truncated when it reaches L = 20; excess
customers are lost.

Example 3.7 Let λ1 = 2;λ2 = 2.5;h1 = 1.01, h2 = 1.0;μ1 = μ2 = 4.6; β1 =
β2 = 0.

Note that Example 3.7 does not include abandonments. The optimal policy for
the example is depicted in Fig. 2. Close to the boundary, it may not be optimal to
prioritize station 1 in spite of the fact that h1 ≥ h2. In the original untruncated model,
each customer that arrives to station k increases the cost per unit time by hk , k = 1,2.
In the truncated system, when the number of customers in station 1 is 20, a customer
arriving at station 1 does not increase the cost, while a station 2 arrival (as long as
station 2 has less than 20 customers) increases the cost by h2; it may be advantageous
to keep station 1 full.

To this end, we consider the following equivalent formulation. Suppose that the
state space is Y = {(I, i) : 0 ≤ i ≤ I < ∞}, where I represents the current number of

Fig. 2 Graphical depiction of
the optimal policy for
Example 3.7
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customers in the system, and i is the number at station 1. Replacing j with (I − i),
we note that d(i, I − i) = m(I, i) := λ1 + λ2 + μ + iβ1 + (I − i)β2. The DCOE are
now (there is also the obvious analogue for the ACOE)

(
α + m(I, i)

)
uα(I, i) = i(h1 + β1P1) + (I − i)(h2 + β2P2) + λ1uα(I + 1, i + 1)

+ λ2uα(I + 1, i) + μmin
{
uα(I − 1, i − 1), uα(I − 1, i)

}

+ iβ1uα(I − 1, i − 1) + (I − i)β2uα(I − 1, i). (3.1)

3.2.1 Finite state approximation

Recall that a uniformizable continuous-time MDP has an equivalent discrete-time
formulation where the optimal policies coincide, and the optimal values are within
a multiplicative constant of each other (see [16] or [20]). Suppose that the maxi-
mum number of customers allowed in the system at any time is L, where L is fi-
nite. Let β = max{β1, β2}. Thus, the abandonment rate from the system is bounded
above by Lβ . Since under these assumptions the Markov decision process is uni-
formizable, let ΨL := λ1 + λ2 + μ + Lβ = 1, where the last equality is without
loss of generality. Since in this section L will be fixed, we suppress dependence
on L. For example, the uniformized discount factor δL = ΨL

α+ΨL
will simply be de-

noted δ.
It remains to describe what happens when a customer arrives at a station when

there are already L total customers in the system. When I = L, a customer arriving
at station 2 is lost forever. When I = L, i < L, and a customer arrives at station 1, a
customer is removed from station 2 (without penalty), and the arriving customer joins
the queue at station 1. When i = L, any arriving customer is lost. That is, when an
arrival occurs to station 1 in state (L, i), the next state is (L, (i + 1) ∧ L). We have
already discussed after Example 3.7 the difficulty in truncating the queue lengths at
each station. The dynamics on the boundary alleviate that concern by making sta-
tion 1 arrivals increase the cost while actually decreasing the cost at station 2. Since
this is only a change on the boundary, when we take limits (as the boundary moves
off to infinity), we still approach the original problem. The discrete-time optimality
criteria are defined for a fixed policy π by

vπ
N,δ(x) := E

π
x

N−1∑

n=0

[
δnC

(
Xn,dn(Xn)

)]
, (3.2)

vπ
δ := lim

N→∞vπ
N,δ(x), (3.3)

where {Xn,n ≥ 0} denotes the stochastic process representing the state at decision
epoch n. Equations (3.2) and (3.3) define the N -stage expected discounted cost and
the infinite-horizon expected discounted cost, respectively. Again, in each case, we
define the optimal values y(i, j) := infπ∈Π yπ(i, j), where y = vN,δ or vδ depending
on the optimality criterion.



Queueing Syst (2011) 67: 63–90 77

The (discrete-time) finite-horizon optimality equations for 1 ≤ i < I < L are
(v0,δ = 0)

vn+1,δ(I, i) = i(h1 + β1P1) + (I − i)(h2 + β2P2)

+ δ
(
λ1vn,δ(I + 1, i + 1) + λ2vn,δ(I + 1, i)

+ μmin
{
vn,δ(I − 1, i − 1), vn,δ(I − 1, i)

}

+ [
Lβ − iβ1 − (I − i)β2

]
vn,δ(I, i) + iβ1vn,δ(I − 1, i − 1)

+ (I − i)β2vn,δ(I − 1, i)
)
. (3.4)

When 1 ≤ i = I < L,

vn+1,δ(I, I ) = I (h1 + β1P1) + δ
(
λ1vn,δ(I + 1, I + 1) + λ2vn,δ(I + 1, I )

+ (μ + Iβ1)vn,δ(I − 1, I − 1) + [Lβ − Iβ1]vn,δ(I, I )
)
.

For i = 0 and I < L,

vn+1,δ(I,0) = I (h2 + β2P2) + δ
(
λ1vn,δ(I + 1,1) + λ2vn,δ(I + 1,0)

+ μvn,δ(I − 1,0) + [Lβ − Iβ2]vn,δ(I,0) + Iβ2vn,δ(I − 1,0)
)
.

When I = L and i ≥ 1,

vn+1,δ(L, i) = i(h1 + β1P1) + (L − i)(h2 + β2P2) + δ
(
λ1vn,δ

(
L, (i + 1) ∧ L

)

+ λ2vn,δ(L, i) + μmin
{
vn,δ(L − 1, i − 1), vn,δ(L − 1, i)

}

+ [
Lβ − iβ1 − (L − i)β2

]
vn,δ(L, i) + iβ1vn,δ(L − 1, i − 1)

+ (L − i)β2vn,δ(L − 1, i)
)
,

and for i = 0 and I = L,

vn+1,δ(L,0) = L(h2 + β2P2) + δ
(
λ1vn,δ(L,1) + λ2vn,δ(L,0) + μvn,δ(L − 1,0)

+ [Lβ − Lβ2]vn,δ(L,0) + Lβ2vn,δ(L − 1,0)
)
.

Note that it is optimal to serve customers at station 1 in state (I, i) when
vn,δ(I −1, i −1) ≤ vn,δ(I −1, i). The discrete-time discounted cost optimality equa-
tions are precisely the same with vn+1,δ and vn,δ replaced with vδ . In each case, it
is well known that the optimal values satisfy the optimality equations (cf. Chap. 6
of [19]). For fixed I , let Δ2vn,δ(I, i) = vn,δ(I, i + 1) − vn,δ(I, i). Thus, in state
(I + 1, i + 1), it is optimal to serve at station 1 if Δ2vn,δ(I, i) ≥ 0. For I < L, let
Δ1vn,δ(I, i) = vn,δ(I + 1, i) − vn,δ(I, i).
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Proposition 3.8 Suppose the following hold:

1. h1 + β1P1 ≥ (≤)h2 + β2P2,
2. β2 ≥ (≤)β1.

Then

1. Δ1vn,δ(I, i) ≥ (≤)0 for all i ≤ I < L and n ≥ 0,
2. Δ2vn,δ(I, i) ≥ (≤)0 for all i ≤ I ≤ L and for all n ≥ 0,
3. The previous inequalities hold when vn,δ is replaced by vδ .

Proof We prove the result in the “≥” direction; the opposite direction holds by sym-
metry. To ease notation, assume that δ = 1; the case for δ < 1 is analogous. The fact
that both inequalities hold when n = 0 is trivial. Assume that they hold for n and
consider n + 1. The second inductive hypothesis implies that it is optimal to serve
at station 1 at time n + 1 except to avoid idling. Suppose I = L − 1. If i = L − 1,
then note that an arrival at station 1 in states (L,L− 1) or (L− 1,L− 1) leads to the
next state being (L,L). Similarly, an arrival at station 2 in either of those same states
leads to (L,L − 1). Thus,

Δ1vn+1,δ(L − 1,L − 1) = h2 + β2P2 + μΔ1vn,δ(L − 2,L − 2)

+ [
Lβ − (L − 1)β1 − β2

]
Δ1vn,δ(L − 1,L − 1)

+ (L − 1)β1Δ1vn,δ(L − 2,L − 2).

The inductive hypothesis yields the result in each case. Similarly, if i = 0 (station 2
arrivals in (L,0) or (L − 1,0) both lead to (L,0)),

Δ1vn+1,δ(L − 1,0)

= h2 + β2P2 + λ1Δ1vn,δ(L,1) + (
μ + (L − 1)β2

)
Δ1vn,δ(L − 2,0)

+ [Lβ − Lβ2]Δ1vn,δ(L − 1,0).

For 0 < i < L − 1,

Δ1vn+1,δ(L − 1, i)

= h2 + β2P2 + λ1Δ1vn,δ(L − 1, i + 1) + μΔ1vn,δ(L − 2, i − 1)

+ [
Lβ − iβ1 − (L − i)β2

]
Δ1vn,δ(L − 1, i)

+ iβ1Δ1vn,δ(L − 2, i − 1) + (L − 1 − i)β2Δ1vn,δ(L − 2, i),

and the inductive hypothesis yields the result. Next, consider I < L − 1 and i = I .
We have

Δ1vn+1,δ(I, I )

= h2 + β2P2 + λ1Δ1vn,δ(I + 1, I + 1) + λ2Δ1vn,δ(I + 1, I )

+ (μ + Iβ1)Δ1vn,δ(I − 1, I − 1) + [Lβ − Iβ1 − β2]Δ1vn,δ(I, I ).
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The inductive hypotheses yield the result. For i = 0,

Δ1vn+1,δ(I,0) = h2 + β2P2 + λ1Δ1vn,δ(I + 1,1) + λ2Δ1vn,δ(I + 1,0)

+ μΔ1vn,δ(I − 1,0) + [
Lβ − (I + 1)β2

]
Δ1vn,δ(I,0)

+ Iβ2Δ1vn,δ(I − 1,0).

For 0 < i < I ,

Δ1vn+1,δ(I, i) = h2 + β2P2 + λ1Δ1vn,δ(I + 1, i + 1) + λ2Δ1vn,δ(I + 1, i)

+ μΔ1vn,δ(I − 1, i − 1) + [
Lβ − iβ1− (I + 1− i)β2

]
Δ1vn,δ(I, i)

+ iβ1Δ1vn,δ(I − 1, i − 1) + (I − i)β2Δ1vn,δ(I − 1, i).

In each case, the inductive hypothesis yields the result. For I = 0 (so that i = 0), we
have

Δ1vn+1,δ(0,0) = h2 + β2P2 + λ1Δ1vn,δ(1,1) + λ2Δ1vn,δ(1,0)

+ [Lβ − β2]Δ1vn,δ(0,0).

This completes the proof of the first inequality. To prove the second inequality, con-
sider first I = L and 0 < i < L. If i = L − 1,

Δ2vn+1,δ(L,L − 1)

= h1 + β1P1 − [h2 + β2P2] + λ1
[
vn,δ(L,L) − vn,δ(L,L)

]

+ λ2
[
Δ2vn,δ(L,L − 1)

] + μ
[
Δ2vn,δ(L − 1,L − 2)

] + [Lβ − Lβ1]vn,δ(L,L)

− [
Lβ − (L − 1)β1 − β2

]
vn,δ(L,L − 1) + Lβ1vn,δ(L − 1,L − 1)

− (L − 1)β1vn,δ(L − 1,L − 2) − β2vn,δ(L − 1,L − 1)

= h1 + β1P1 − [h2 + β2P2] + λ2
[
Δ2vn,δ(L,L − 1)

]

+ μ
[
Δ2vn,δ(L − 1,L − 2)

] + [Lβ − Lβ1]Δ2vn,δ(L,L − 1)

+ (L − 1)β1Δ2vn,δ(L − 1,L − 2) + (β2 − β1)Δ1vn,δ(L − 1,L − 1).

The second inductive hypothesis holds in each case involving vn,δ , save the last one,
where the first inductive hypothesis yields the result. Consider now the case where
i = 0. Then

Δ2vn+1,δ(L,0) = h1 + β1P1 − [h2 + β2P2] + λ1Δ2vn,δ(L,1) + λ2Δ2vn,δ(L,0)

+ [
Lβ − β1 − (L − 1)β2

]
Δ2vn,δ(L,0)

+ (β2 − β1)Δ1vn,δ(L − 1,0) + (L − 1)β2Δ2vn,δ(L − 1,0).

The same argument as above yields the result. Suppose I = L and 0 < i < L − 1.
A little algebra yields
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Δ2vn+1,δ(L, i)

= h1 + β1P1 − [h2 + β2P2] + λ1Δ2vn,δ(L, i + 1) + λ2Δ2vn,δ(L, i)

+ μΔ2vn,δ(L − 1, i − 1) + [
Lβ − (i + 1)β1 − (L − i − 1)β2

]
Δ2vn,δ(L, i)

+ iβ1Δ2vn,δ(L − 1, i − 1) + (L − i − 1)β2Δ2vn,δ(L − 1, i)

+ (β2 − β1)Δ1vn,δ(L − 1, i).

The same argument as in the previous cases holds. When I < L, there are also several
cases to consider. However, for i = I − 1, note

Δ2vn+1,δ(I, I − 1)

= h1 + β1P1 − [h2 + β2P2] + λ1Δ2vn,δ(I + 1, I ) + λ2Δ2vn,δ(I + 1, I − 1)

+ μΔ2vn,δ(I − 1, I − 2) + [Lβ − Iβ1]Δ2vn,δ(I, I − 1)

+ (I − 1)β1Δ2vn,δ(I − 1, I − 2) + (β2 − β1)Δ1vn,δ(I − 1, I − 1).

The result follows. For i = 0,

Δ2vn+1,δ(I,0)

= h1 + β1P1 − [h2 + β2P2] + λ1Δ2vn,δ(I + 1,1) + λ2Δ2vn,δ(I + 1,0)

+ [
Lβ − β1 − (I − 1)β2

]
Δ2vn,δ(I,0) + (β2 − β1)Δ1vn,δ(I,0)

+ (I − 1)Δ2β2vn,δ(I − 1,0).

For 0 < i < I − 1,

Δ2vn+1,δ(I, i)

= h1 + β1P1 − [h2 + β2P2] + λ1Δ2vn,δ(I + 1, i + 1) + λ2Δ2vn,δ(I + 1, i)

+ μΔ2vn,δ(I − 1, i − 1) + [
Lβ − (i + 1)β1 − (I − i − 1)β2

]
Δ2vn,δ(I, i)

+ (β2 − β1)Δ1vn,δ(I, i − 1) + iβ1Δ2vn,δ(I − 1, i − 1)

+ (I − i − 1)β2Δ2vn,δ(I − 1, i),

which is nonnegative, as desired. The third result follows by noting that vn,δ → vδ . �

3.2.2 Convergence to the countable state model

In this section we show that the infinite-horizon discounted cost value function for the
truncated system, vα,L, converges to that in the original system. We have dispensed
with the assumptions that δL = ΨL = 1 and added back in the dependence on L. Note
that vα,L is the unique (bounded) vector satisfying the discrete-time infinite-horizon
δL-discounted cost optimality equations (for 0 < i < I < L). So,
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(α + ΨL)vα,L(I, i) = ih1 + (I − i)h2 + iβ1P1 + (I − i)β2P2

+ λ1vα,L(I + 1, i + 1) + λ2vα,L(I + 1, i)

+ μmin
{
vα,L(I − 1, i − 1), vα,L(I − 1, i)

}

+ [
Lβ − iβ1 − (I − i)β2

]
vα,L(I, i) + iβ1vα,L(I − 1, i − 1)

+ (I − i)β2vα,L(I − 1, i), (3.5)

where the above expression can be obtained by replacing vn,δ in (3.4) with vα,L and
using a little algebra. For completeness, we assume that vα,L(I, i) = 0 for I > L. The
next result shows that the limit of vα,L exists.

Lemma 3.9 vα,L is (pointwise) monotone in L.

Proof We need to prove that vα,L+1(I, i) ≥ vα,L(I, i) for all 0 ≤ i ≤ I and all L ≥ 0.
First note that for I ≥ L + 1, the result holds trivially (by assumption). To complete
the proof, follow the sample paths of two processes defined on the same probability
space and starting in the same state where I ≤ L. Suppose that π∗

L+1 is an optimal
policy for the state space bounded by L + 1. Let πL be a policy that serves at exactly
the same station as π∗

L+1. Process 1 uses policy π∗
L+1 and operates on the states

such that I ≤ L + 1. Process 2 uses policy πL and operates on the states such that
I ≤ L. Now since both processes use the same policy when I < L, as long as the
total number of customers is less than L, they see the same arrivals, services and
abandonments, and, therefore the same costs. Consider the first time the processes
enter a state with the number of customers equal to L, say (L, i′). If a service or
abandonment is the next event, both processes remain coupled until the next time
they have L customers in the system. If a class 1 arrival occurs, and i′ �= L, both
processes see an increase in the number of class 1 customers. Process 1 is in state
(L + 1, i′ + 1), while Process 2 is in state (L, i′ + 1). After this time, Process 2 does
not serve at station 2, until there is either an extra abandonment or an extra service
at station 2. In particular, if the optimal policy tells Process 1 to serve at station 1,
so does Process 2. If it says to work at station 2, Process 2 idles until the service is
complete (or an extra abandonment occurs). Thus, since Process 1 accrues costs at a
higher rate and is always in a lower state (according to the cost function), we have

vα,L+1(I, i) ≥ v
πL

α,L(I, i) ≥ vα,L(I, i).

Since the initial state was arbitrary, the result follows. �

Lemma 3.9 implies that vα,L converges as L increases. Let vα,∞ denote this (pos-
sibly infinite) limit. A little algebra in (3.5) yields, for I < L,

(
α + m(I, i)

)
vα,L(I, i) = ih1 + (I − i)h2 + iβ1P1 + (I − i)β2P2

+ λ1vα,L(I + 1, i + 1) + λ2vα,L(I + 1, i)

+ μmin
{
vα,L(I − 1, i − 1), vα,L(I − 1, i)

}

+ iβ1vα,L(I − 1, i − 1) + (I − i)β2vα,L(I − 1, i),
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which for I < L is precisely the same as (3.1). Thus, as L → ∞, vα,L → vα,∞ = vα .
This leads to the proof of Theorem 3.5.

Proof of Theorem 3.5 Since Δ1vα,L ≥ 0 for all L, the first inequality follows from
the fact vα,L → vα . Similarly, define uα(I, i) = vα(I, i) − vα(0,0). Since uα (and
αvα) converges along a subsequence to a solution of the CTDCOE (see the proof of
Theorem 4.1 of [12]), (ρ∗, u(I, i)), the inequality holds in the average case as well.
The result follows. �

4 Numerical results

In this section we discuss the improvements that may be possible when the abandon-
ment rates are such that the intuitive index policy (either give priority to the largest
Ri or to the largest hi + βiPi ) is not guaranteed to be optimal. In both the rewards
and holding cost models, we discern under what conditions one should be careful
in the choice of policy and also try to show how much system performance may be
impacted.

4.1 The rewards model

We provide results for a system with λ1 = 1 and λ2 = μ = 4. We initially set R1 = 10
and R2 = 5, to model a system where, in the overall offered demand, there is a small
proportion of high-revenue customers. Giving priority to the high-reward customers
maximizes short-term rewards, and if the abandonment rates are ordered such that
β1 ≥ β2, then according to Theorem 3.3, this policy is also optimal in the long-run.
We are interested in seeing what happens when β2 > β1. In this case, one can think
that there may be a trade-off between maximizing short-term reward and minimizing
the amount of offered demand that is lost through abandonments.

We studied a truncated system with buffer size 20 for both classes. In all of the
results that follow, we use ρ1 to denote the average reward for a policy that gives
priority to queue 1, while ρ∗ is the average reward for the optimal policy.

First, we fix β2 = 2.0 and observe the effect of varying β1. The results in
Table 1 demonstrate that the improvement in using the optimal policy increases as
β1 decreases, as one would expect. (In Tables 1, 2, and 3, the last column indicates
the form of the optimal policy. P1 denotes priority to class 1, P2 denotes priority to

Table 1 Rewards model,
varying β1

β1 ρ1 ρ∗ % from optimal Policy

0 0.353 0.394 10.4 P2

0.1 0.336 0.358 6.1 T1

0.2 0.320 0.332 3.6 T1

0.5 0.281 0.281 0 P1

1.0 0.233 0.233 0 P1

2.0 0.172 0.172 0 P1
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Table 2 Rewards model,
varying β2

β2 ρ1 ρ∗ % from optimal Policy

1.0 0.585 0.605 3.3 T1

2.0 0.336 0.358 6.1 T1

5.0 0.135 0.147 8.2 T1

10.0 0.632 0.678 6.8 T1

Table 3 Rewards model,
varying R2

R2 ρ1 ρ∗ % from optimal Policy

1 0.208 0.208 0 P1

2 0.240 0.242 0.8 T1

5 0.336 0.358 6.1 T1

9 0.464 0.516 10.1 T1

class 2, and T1 gives priority to class 1 if the number of class 1 customers is greater
than a (state-dependent) threshold.) As β1 decreases, it becomes advantageous to de-
vote more effort to queue 2, to avoid excessive lost demand, as customers are less
likely to be lost from queue 1. For β1 small, the optimal policy actually gives priority
to queue 2. At β1 = 0.5, even though β1 is still less than β2, giving priority to queue 1
becomes optimal.

Equivalently, we would expect the trade-off described above to become more sig-
nificant as β2 grows and R2 approaches R1. Both of these expectations are confirmed
in Tables 2 and 3. Table 2 has β1 fixed at 0.1 and varies β2, while Table 3 fixes
β1 = 0.1, β2 = 2.0, and varies R2 (here R1 remains 10).

In summary, in general, one should see the most improvement in using the optimal
policy over simply giving priority to queue 1 if β2 is large relative to β1, and R2 is
close to R1. To get an idea of the order of the maximum possible improvement (at
least in this system), set β1 = 0, β2 = 10, and R2 = 9.99. Here, ρ1 = 0.0832, while
ρ∗ (the optimal policy gives priority to queue 2) is equal to 0.0945, an improvement
of 13.6 percent. In the next section we will see that the improvements may be even
more dramatic in the holding cost model.

4.2 The holding costs model

Here, we would like to again demonstrate the importance of taking abandonments
into account, beyond through the index hi + βiPi . We begin with a system that is
almost symmetric. Let λ1 = λ2 = 2, μ = 4, h1 = 1, h2 = 0.99, and P1 = P2 = 1.
Note the loss of a customer in either queue is equally costly and the holding costs are
close. Queue 1 will get priority according to our index, and Theorem 3.5 tells us that
this policy is optimal if β2 ≥ β1. If this condition is violated, then giving priority to
queue 1 may yield poor performance. The intuition behind this is that if β1 > β2, then
the higher rate of abandonments at queue 1 may mean that giving priority to queue 1
is simply too greedy.

To see this, we set β2 = 0 and varied β1, with the results in Table 4. (In Tables 4, 5,
and 6, the final column gives the form of the optimal policy. The priority policies are
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Table 4 Holding costs model,
varying β1

β1 ρ1 ρ∗ % increase Policy

0.1 9.09 5.28 72.2 P2

0.2 8.38 3.94 112.7 P2

0.5 6.72 2.69 149.8 P2

1.0 5.00 2.08 140.4 P2

2.0 3.40 1.66 104.8 P2

4.0 2.32 1.38 68.1 P2

10.0 1.56 1.17 33.3 P2

100.0 1.05 1.01 4.0 P2

Table 5 Holding costs model,
varying h2

h2 ρ1 ρ∗ % increase Policy

0.9 6.17 2.60 137.3 P2

0.8 5.56 2.50 122.4 P2

0.7 4.95 2.40 106.3 P2

0.6 4.34 2.30 88.7 P2

0.5 3.73 2.20 69.5 P2

0.4 3.12 2.08 50.0 DT

0.3 2.50 1.92 30.2 DT

0.2 1.89 1.69 11.8 DT

0.1 1.28 1.28 0 P1

Table 6 Holding costs model,
varying β2

β2 ρ1 ρ∗ % increase Policy

0.1 3.69 2.49 48.2 P2

0.2 2.89 2.35 23.0 P2

0.3 2.49 2.24 11.2 P2

0.4 2.24 2.15 4.2 P2

is in the previous subsection, with the addition that DT denotes that the optimal policy
is to give priority to class 2 if either the total number of customers in the system is
above a threshold, or the number of class 1 customers is below a threshold.) Even with
β1 very small, there is a dramatic improvement by using the optimal policy (which
gives priority to queue 2). The effect appears to be most prominent for moderate
values of β1 (relative to the service rate). At higher values of β1, the improvement
becomes less significant. The last row, β1 = 100.0, suggests that a customer arriving
to queue 1 either is serviced immediately or abandons, so there is little hope for the
scheduling policy to have much impact.

As expected, this improvement is increasing with h2 (Table 5 has results for vary-
ing h2 with β1 = 0.5 and β2 = 0). Finally, to see that β2 = 0 is not special, we
fix β1 = 0.5 and vary β2 (Table 6), and we see that the improvement, which is still
significant, decreases with increasing β2 (as expected).
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5 Conclusions/future work

In this paper we add abandonments to the classic (stochastic) scheduling model in a
two-class service system. We do so under the two most common cost/reward struc-
tures; maximize rewards per service or minimize holding costs per customer per unit
time. In each case the optimal scheduling rule, that holds without abandonments, no
longer holds in general. Conditions for this simple priority rule to hold are provided.
We also point to the fact that adding abandonments (in either case) causes several
technical challenges. In particular, since the abandonment rate is not bounded, uni-
formization is not possible, and we must appeal to a continuous-time formulation of a
Markov decision process instead of the discrete-time equivalent. Initially, this means
the standard induction arguments cannot be applied. In the reward model, we use
the continuous-time optimality equations and a sample path argument to show the
result. However, even this method does not extend to the holding cost model. Only
after a savvy use of truncation can the result be shown. As far as we know, this is the
first time the continuous-time MDP formulation has been used to show structure in a
queueing control problem.

Our numerical results highlight the point that a decision-maker that ignores the
abandonments can significantly decrease the reward earned or increase the cost ac-
crued. In the reward model, the added condition on the abandonment rates has an
intuitive explanation and leads to a trade-off. The decision-maker needs to maximize
rewards while minimizing the server idleness. When the rates are ordered in the same
way as the rewards, both considerations can be handled simultaneously by prioritiz-
ing that class.

Characterizing the optimal policy in general (when our policies do not hold) is of
clear interest. We have attempted to prove structural results in this case (in particular
monotonicity), but to this point, such results have been elusive. Even if one could not
characterize the policy over the entire parameter space, it would be of interest to pro-
vide a sharp condition under which the modified c–μ rule is optimal. Our conjecture
is that this sharp condition would not be a simple expression.

There are several extensions that could be handled in future work. Perhaps the
most obvious one is to consider more than 2 customer classes. The difficulty with
multiple classes (even 3) is that the MDP formulation becomes more difficult to han-
dle. For example, in the rewards model with 3 classes, we conjecture that it is opti-
mal to prioritize station 1 when R1 = max{R1,R2,R3} and β1 = max{β1, β2, β3}. To
show this, we would need to show that R1 −R2 +uα(i −1, j, k)−uα(i, j −1, k) ≥ 0
and R1 −R3 +uα(i −1, j, k)−uα(i, j, k−1) ≥ 0. A sample path argument might do
it but would be more tedious. In the holding cost case, we believe an analogous result
holds, but since even the two-class case requires some adjustment to the truncation,
the multiple class case seems unlikely to be a simple extension.

A second direction for examination is that of multiple servers. In the case of col-
laboration (when several servers can be assigned to the same customer), it seems that
the current analysis holds. When servers cannot collaborate and there are but two
classes, we believe the servers should avoid idling when the system state is close to
the boundary, but again, the current insights hint toward what is optimal. The case of
multiple servers and multiple customer classes is beyond the scope of this study and
is still open.
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Finally, we would like to point out that there are several other minor extensions.
We have assumed that the service rates of each class are the same; that is, jobs as-
signed to the server in question are somewhat similar. We have also assumed that
customers that are in service can abandon. This is akin to order cancellations or hang-
ups after service has begun. It is our belief that in each case, each of these extensions
make the problems far more tedious but do not add significantly to the insights pro-
vided here. We leave them for future research.
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Appendix

In this section we show that the optimality equations have a solution. Define q(y|x, a)

to be the rate at which a process leaves state x and goes to y given that action a is
chosen. Recall for a continuous time Markov chain, −q(x|x, a) is the rate at which a
Markov process leaves state x given that action a is chosen. Denote the reward/cost
rate in state x when using action a by c(x, a). Let q(x) := sup{−q(x|x, a) : a ∈
A(i)}. The following set of assumptions appear as Assumptions A, B, and C in [12].
Note that we are not making these assumptions in our work, rather we show that they
all hold under our previously stated assumptions on the system.

Assumption A There exists a sequence {Xm,m ≥ 1} of subsets of X, a nondecreas-
ing function w ≥ 1 on X, and constants, b ≥ 0 and c �= 0 such that

1. Xm ↑ X and sup{q(x) : x ∈ Xm} < ∞ for each m ≥ 1;
2. inf{w(x) : x /∈ Xm} → ∞ as m → ∞; and
3.

∑
y∈X

w(y)q(y|x, a) ≤ cw(x) + b.

Assumption B

1. For every (x, a) ∈ {(y, a) : y ∈ X and a ∈ A(x)} and some constant M > 0,
|c(x, a)| ≤ Mw(x), where A(x) is the set of available actions in state x and w

comes from Assumption A.
2. The discount factor α > 0 is such that α > c, where c is defined in Assump-

tion A(3).

Assumption C

1. The action set A(x) is compact for each x ∈ X.
2. The functions c(x, a), q(y|x, a), and

∑
y∈X

w(y)q(y|x, a) are all continuous in
a ∈ A(x) for each fixed x, y ∈ X.

3. There exists a nonnegative function w′ on X and constants c′ > 0, b′ ≥ 0, and
M ′ > 0 such that
(a) q(x)w(x) ≤ M ′w′(x), and
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(b) for all (x, a),

∑

y∈X

w′(y)q(y|x, a) ≤ c′w′(x) + b′.

Lemma 6.1 Suppose α > min{β1, β2} and let

D :=
{

μmax{R1,R2} for the reward model,

max{h1 + β1P1, h2 + β2P2} for the holding cost model.

In either the reward or holding cost models, Assumptions A, B, and C are satisfied
with Xm = {(i, j)|0 ≤ i, j ≤ m}, b = (λ1 + λ2)D + (min{β1, β2})(max{D,1}), c =
min{β1, β2}, and w(i, j) := (i + j)D + max{D,1}.

Proof We prove the result in the holding cost model. The reward model is analogous.
To ease notation, let β := min{β1, β2}. Trivially, Xm ↑ Z

+×Z
+ as m ↑ ∞; Assump-

tion A(1) holds. Note that w(i, j) ≥ c((i, j), a). Of course, the fact that w(i, j) is
lower-bounded by 2mD + 1 for (i, j) /∈ Xm implies that Assumption A(2) holds.
Note that, for a = 1,2 (where the server will serve),

λ1w(i + 1, j) + λ2w(i, j + 1) + μw
(
i − (2 − a), j + (1 − a)

) + iβ1w(i − 1, j)

+ jβ2w(i, j − 1) − (λ1 + λ2 + μ + iβ1 + jβ2)w(i, j)

= [λ1 + λ2 − μ − iβ1 − jβ2]D ≤ −βw(i, j) + b,

and Assumption A(3) is satisfied, as desired. Assumption B(1) is satisfied trivially,
and Assumption B(2) holds by assumption. Since the action set is finite, the com-
pactness and continuity conditions of Assumptions C(1) and C(2) are also trivial. It
remains to consider Assumption C(3). Let

q(i, j) := λ1 + λ2 + μ + iβ1 + jβ2

≤ λ1 + λ2 + μ + (i + j)max{β1, β2}.
Define

w′(i, j) := (
(i + j)D + max{D,1})[λ1 + λ2 + μ + (i + j)max{β1, β2}

]

= (
(i + j)D + max{D,1})[λ1 + λ2 + μ + (i + j)β

]
,

where β is the maximal abandonment rate. We have q(i, j)w(i, j) ≤ M ′w′(i, j)
(M ′ = 1). Moreover,

B(i, j) := λ1w′(i + 1, j) + λ2w′(i, j + 1) + μw′(i − (2 − a), j + 1 − a
)

+ iβ1w′(i − 1, j) + jβ2w′(i, j − 1) − (λ1 + λ2 + μ + iβ1 + jβ2)w′(i, j)

= (λ1 + λ2)
([

λ1 + λ2 + μ + 2(i + j)β
]
D + βD + β

(
max{D,1}))

− [μ + iβ1 + jβ2]([λ1 + λ2 + μ + 2(i + j)β
]
D + βD − β

(
max{D,1})).
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Without loss of generality, assume that D ≥ 1 (otherwise the constant b′ becomes
slightly more complicated). A little algebra yields

B(i, j) ≤ (λ1 + λ2)
([

λ1 + λ2 + μ + 2(i + j)β
]
D + 2βD

)

= (λ1 + λ2)
(
w′(i, j) − [

λ1 + λ2 + μ + (i + j)β
]
(i + j)D + 2βD

)

+ (λ1 + λ2)
[
(i + j)β

]
D

≤ (λ1 + λ2)
(
w′(i, j) + 2βD

)
.

Thus, Assumption C(3) holds with c′ = λ1 + λ2 and b′ = (λ1 + λ2)2βD, and the
proof is complete. �

Proof of Theorem 2.4 Given Lemma 6.1, the result is an immediate consequence of
Theorem 3.2 of [12]. �

To prove Theorem 2.5, we proceed in much the same as in the discounted cost
case. The following appears as Assumption A∗ in [12].

Assumption A∗ Assumptions A(1) and A(2) hold, and there exists a finite set G ⊂ X,
b ≥ 0, and c > 0 such that

∑

y∈X

w(y)q(y|x, a) ≤ −cw(x) + 1{x∈G}b. (6.1)

Lemma 6.2 Assumption A∗ holds for w and w2.

Proof Let I ′ be the smallest integer such that for all (i + j) ≥ I ′, we have
(β/2)w(i, j) ≥ (λ1 +λ2 −μ)D +β max{D,1} and define ϕ = w(i, j) when i + j =
I ′. Recall from the proof of Lemma 6.1 that the left-hand side of (6.1) is bounded by

[λ1 + λ2 − μ − iβ1 − jβ2]D
≤ (λ1 + λ2 − μ)D − β(i + j)D

= (λ1 + λ2 − μ)D + β max{D,1} − β
[
(i + j)D + max{D,1}]

= (λ1 + λ2 − μ)D + β max{D,1} − βw(i, j)

= (λ1 + λ2 − μ)D + β max{D,1} − (β/2)w(i, j) − (β/2)w(i, j)

≤ −(β/2)w(i, j) + ϕ1{(i+j)≤I ′},

where the last inequality holds by assumption and completes the proof.
Consider now w2. The left-hand side of (6.1), with the addition of cw(i, j) for

some c > 0 (to be defined later), can be written (for (i + j) ≥ 1)

(λ1 + λ2)
[
(i + j + 1)D + 1

]2 + (μ + iβ1 + jβ2)
[
(i + j − 1)D + 1

]2

+ [
c − (λ1 + λ2 + μ + iβ1 + jβ2)

][
(i + j)D + 1

]2
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= (λ1 + λ2)
[(

(i + j)D + 1
) + D

]2 + (μ + iβ1 + jβ2)
[(

(i + j)D + 1
) − D

]2

+ [
c − (λ1 + λ2 + μ + iβ1 + jβ2)

][
(i + j)D + 1

]2

= (λ1 + λ2)
[
2D

(
(i + j)D + 1

) + D2]

+ (μ + iβ1 + jβ2)
[−2D

(
(i + j)D + 1

) + D2] + c
[
(i + j)D + 1

]2

≤ (λ1 + λ2)
[
2D

(
(i + j)D + 1

) + D2]

+ (
μ + (i + j)β

)[−2D
(
(i + j)D + 1

) + D2] + c
[
(i + j)D + 1

]2
. (6.2)

Consider the quadratic term (i + j)2D2(c − 2β). Thus, for c < 2β and (i + j) suf-
ficiently large, the expression in (6.2) is nonpositive. The quadratic term dominates.
Let I ′ be such that the expression in (6.2) is nonpositive for (i + j) ≥ I ′ and denote
the maximum of this expression for (i + j) ≤ I ′ by ϕ. The result follows. �

Proof of Theorem 2.5 The fact that w2 satisfies (6.1) along with the irreducibility
implies that Assumption D of [12] holds (see the comments following Proposition 4.2
of [12]). The theorem is now a direct application of Theorem 4.1 of [12]. �
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