87 research outputs found

    The miswired brain: making connections from neurodevelopment to psychopathology

    Get PDF
    Developmental neurobiologists have made great progress in elucidating the molecular mechanisms underlying nervous system development. There has been less focus, however, on the consequences when these processes go wrong. As the evidence increases that mutations in neurodevelopmental genes are associated with major psychiatric disorders, defining these consequences assumes paramount importance in elucidating pathogenic mechanisms

    Antioxidant defence of colostrum and milk in consecutive lactations in sows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parturition is supposed to be related to oxidative stress, not only for the mother, but also for the newborn. Moreover, it is not clear whether consecutive pregnancies, parturitions, and lactations are similar to each other in regards to intensity of metabolic processes or differ from each other. The aim of the study was to compare dynamic changes of antioxidative parameters in colostrum and milk of sows taken during 72 h postpartum from animals in consecutive lactations. Activities of glutathione peroxidase (GSH-Px), glutathione transferase (GSH-Tr), and superoxide dismutase (SOD), and amount of vitamin A and C were measured. Healthy pregnant animals were divided into 4 groups according to the assessed lactation: A -1<sup>st </sup>lactation (n = 10), B - 2<sup>nd </sup>and 3<sup>rd </sup>lactation (n = 7), C - 4<sup>th </sup>and 5<sup>th </sup>lactation (n = 11), D - 6<sup>th </sup>- 8<sup>th </sup>lactation (n = 8). The colostrum was sampled immediately after parturition and after 6, 12, 18 and 36 h while the milk was assessed at 72 h after parturition. Spectrophotometric methods were used for measurements.</p> <p>Results</p> <p>The activity of antioxidative enzymes and the concentration of vitamin A increased with time postpartum. The concentration of vitamin C was the highest between the 18th and 36th h postpartum.</p> <p>Conclusions</p> <p>Dynamic changes in the values of antioxidant parameters measured during the study showed that sows milk provides the highest concentration of antioxidants in the 2<sup>nd </sup>and 3<sup>rd </sup>and 4<sup>th </sup>and 5<sup>th </sup>lactation giving the best defence against reactive oxygen species to newborns and mammary glands.</p

    Expression of the myosin heavy chain IIB gene in porcine skeletal muscle: the role of the CArG-box promoter response element

    Get PDF
    Due to its similarity to humans, the pig is increasingly being considered as a good animal model for studying a range of human diseases. Despite their physiological similarities, differential expression of the myosin heavy chain (MyHC) IIB gene (MYH4) exists in the skeletal muscles of these species, which is associated with a different muscle phenotype. The expression of different MyHC isoforms is a critical determinant of the contractile and metabolic characteristics of the muscle fibre. We aimed to elucidate whether a genomic mechanism was responsible for the drastically different expression of MYH4 between pigs and humans, thus improving our understanding of the pig as a model for human skeletal muscle research. We utilized approximately 1 kb of the MYH4 promoter from a domestic pig and a human (which do and do not express MYH4, respectively) to elucidate the role of the promoter sequence in regulating the high expression of MYH4 in porcine skeletal muscle. We identified a 3 bp genomic difference within the proximal CArG and Ebox region of the MYH4 promoter of pigs and humans that dictates the differential activity of these promoters during myogenesis. Subtle species-specific genomic differences within the CArG-box region caused differential protein-DNA interactions at this site and is likely accountable for the differential MYH4 promoter activity between pigs and humans. We propose that the genomic differences identified herein explain the differential activity of the MYH4 promoter of pigs and humans, which may contribute to the differential expression patterns displayed in these otherwise physiologically similar mammals. Further, we report that both the pig and human MYH4 promoters can be induced by MyoD over- expression, but the capacity to activate the MYH4 promoter is largely influenced by the 3 bp difference located within the CArG-box region of the proximal MYH4 promoter

    Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats

    Get PDF
    Rationale Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking. Objectives As recent findings have suggested involvement of the brain cannabinoid system in impulsivity, the present study aimed at further elucidating the role of cannabinoid CB1 receptor activation in distinct measures of impulsive behavior. Materials and methods The effects of the selective cannabinoid CB1 receptor antagonist, rimonabant (SR141716A) and agonist WIN55,212-2 were tested in various measures of impulsive behavior, namely, inhibitory control in a five-choice serial reaction time task (5-CSRTT), impulsive choice in a delayed reward paradigm, and response inhibition in a stop-signal paradigm. Results In the 5-CSRTT, SR141716A dose-dependently improved inhibitory control by decreasing the number of premature responses. Furthermore, SR141716A slightly improved attentional function, increased correct response latency, but did not affect other parameters. The CB1 receptor agonist WIN55,212-2 did not change inhibitory control in the 5-CSRTT and only increased response latencies and errors of omissions. Coadministration of WIN55,212-2 prevented the effects of SR141716A on inhibitory control in the 5-CSRTT. Impulsive choice and response inhibition were not affected by SR141716A at any dose, whereas WIN55,212-2 slightly impaired response inhibition but did not change impulsive choice. Conclusions The present data suggest that particularly the endocannabinoid system seems involved in some measures of impulsivity and provides further evidence for the existence of distinct forms of impulsivity that can be pharmacologically dissociated

    Zic2 hypomorphic mutant mice as a schizophrenia model and ZIC2 mutations identified in schizophrenia patients

    Get PDF
    ZIC2 is a causal gene for holoprosencephaly and encodes a zinc-finger-type transcriptional regulator. We characterized Zic2kd/+ mice with a moderate (40%) reduction in Zic2 expression. Zic2kd/+ mice showed increased locomotor activity in novel environments, cognitive and sensorimotor gating dysfunctions, and social behavioral abnormalities. Zic2kd/+ brain involved enlargement of the lateral ventricle, thinning of the cerebral cortex and corpus callosum, and decreased number of cholinergic neurons in the basal forebrain. Because these features are reminiscent of schizophrenia, we examined ZIC2 variant-carrying allele frequencies in schizophrenia patients and in controls in the Japanese population. Among three novel missense mutations in ZIC2, R409P was only found in schizophrenia patients, and was located in a strongly conserved position of the zinc finger domain. Mouse Zic2 with the corresponding mutation showed lowered transcription-activating capacity and had impaired target DNA-binding and co-factor-binding capacities. These results warrant further study of ZIC2 in the pathogenesis of schizophrenia

    Structural Basis of Chemokine Sequestration by CrmD, a Poxvirus-Encoded Tumor Necrosis Factor Receptor

    Get PDF
    Pathogens have evolved sophisticated mechanisms to evade detection and destruction by the host immune system. Large DNA viruses encode homologues of chemokines and their receptors, as well as chemokine-binding proteins (CKBPs) to modulate the chemokine network in host response. The SECRET domain (smallpox virus-encoded chemokine receptor) represents a new family of viral CKBPs that binds a subset of chemokines from different classes to inhibit their activities, either independently or fused with viral tumor necrosis factor receptors (vTNFRs). Here we present the crystal structures of the SECRET domain of vTNFR CrmD encoded by ectromelia virus and its complex with chemokine CX3CL1. The SECRET domain adopts a Ξ²-sandwich fold and utilizes its Ξ²-sheet I surface to interact with CX3CL1, representing a new chemokine-binding manner of viral CKBPs. Structure-based mutagenesis and biochemical analysis identified important basic residues in the 40s loop of CX3CL1 for the interaction. Mutation of corresponding acidic residues in the SECRET domain also affected the binding for other chemokines, indicating that the SECRET domain binds different chemokines in a similar manner. We further showed that heparin inhibited the binding of CX3CL1 by the SECRET domain and the SECRET domain inhibited RAW264.7 cell migration induced by CX3CL1. These results together shed light on the structural basis for the SECRET domain to inhibit chemokine activities by interfering with both chemokine-GAG and chemokine-receptor interactions

    HTLV-1 Evades Type I Interferon Antiviral Signaling by Inducing the Suppressor of Cytokine Signaling 1 (SOCS1)

    Get PDF
    Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of Adult T cell Leukemia (ATL) and the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the majority of HTLV-1–infected individuals remain asymptomatic carriers (AC) during their lifetime, 2–5% will develop either ATL or HAM/TSP, but never both. To better understand the gene expression changes in HTLV-1-associated diseases, we examined the mRNA profiles of CD4+ T cells isolated from 7 ATL, 12 HAM/TSP, 11 AC and 8 non-infected controls. Using genomic approaches followed by bioinformatic analysis, we identified gene expression pattern characteristic of HTLV-1 infected individuals and particular disease states. Of particular interest, the suppressor of cytokine signaling 1β€”SOCS1β€”was upregulated in HAM/TSP and AC patients but not in ATL. Moreover, SOCS1 was positively correlated with the expression of HTLV-1 mRNA in HAM/TSP patient samples. In primary PBMCs transfected with a HTLV-1 proviral clone and in HTLV-1-transformed MT-2 cells, HTLV-1 replication correlated with induction of SOCS1 and inhibition of IFN-Ξ±/Ξ² and IFN-stimulated gene expression. Targeting SOCS1 with siRNA restored type I IFN production and reduced HTLV-1 replication in MT-2 cells. Conversely, exogenous expression of SOCS1 resulted in enhanced HTLV-1 mRNA synthesis. In addition to inhibiting signaling downstream of the IFN receptor, SOCS1 inhibited IFN-Ξ² production by targeting IRF3 for ubiquitination and proteasomal degradation. These observations identify a novel SOCS1 driven mechanism of evasion of the type I IFN antiviral response against HTLV-1
    • …
    corecore