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Exchange interactions in the quasi-linear-chain antiferromagnet KFes2
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We report magnetic susceptibility measurements on KFeS2 in the temperature range 4.2 & T & 300
K. In addition to a curvature of the susceptibility curve P(T) near 250 K, we also observe a small
sharp maximum at 12.5 K characteristic of linear-chain antiferromagnetism in quasi-one-
dimensional systems. The results were interpreted with use of the molecular-field approximation
and the temperature-dependent Green's-function method as well as the refined molecular-field
theory for the Heisenberg model. The interchain, and intrachain exchange interactions and their ra-
tio (g=10 ) which measures the one dimensionality of the system could be estimated and com-
pared with other results. We attribute the positive value of the paramagnetic Curie temperature
8-+70 K to a ferromagnetic exchange interaction J2 between next-nearest neighbors along the
chains, superimposed on the antiferromagnetic exchange Jl between nearest neighbors. The best fit
to the experimental data is obtained for Jl/k~-23. 6 K, J2/k& ——41.9 K, and J'/k& ——3.3 K, with
J being the interchain exchange constant. We suggest that the three-dimensional antiferromagne-
tism occurs at the Neel temperature T~ -12.5 K rather than at 250 K as is usually assumed.

I. INTRODUCTION

The iron sulfur proteins are widely distributed in nature
as major components of bioenergetic systems. Such pro-
teins, named ferrodoxins, with linked clusters of FeS4
tetrahedra have been widely investigated' since they
play important roles in the biochemical reduction and oxi-
dation processes. ' In this respect, it may be desirable to
study the magnetic properties of the potassium dithiofer-
rate KFeSz as a spin-model compound of the ferredoxin.
Actually, KFeS2 is a good candidate for a spin analog of
the active sites of the ferredoxins, since the basic structure
consists of the same tetrahedral FeS4 chains. Also, in the
oxidized state of the two iron ferredoxins, the irons are be-
lieved to be antiferromagnetically coupled and this may be
well simulated by iron atoms in KFeS2. '

KFeS2 is a monoclinic crystal with space-group symme-
try C2/c ( Czh } and includes four molecules per unit cell
having all Fe at equivalent sites. Mossbauer studies of
this material have shown that the iron is in a trivalent
state. " The Fe + ions are surrounded by a distorted
tetrahedron of four S ions. It follows that the (FeS2)'
ions are arranged in chains of FeS4 tetrahedra parallel to
the c axis. The strong covalent bonding (4s 4p ) along the

c axis expected in this situation agrees with the parallel-
to-c axis needle shape of the crystals. Thus, much
stronger interaction is expected between Fe + ions in the
chain, with an intrachain iron-iron distance 2.70 A, than
between Fe + of adjacent chains, with an interchain
Fe +-Fe + distance 6.6 A. Then, a one-dimensional na-
ture of iron-iron spin interaction is inferred. The spin ar-
rangement studied by neutron-diffraction experiments' '
is illustrated in Fig. 1. The ratio

~

J'/J&
~

with J', the ex-
change integral between the chains, and J~, the exchange
integral within the chain, is of fundamental interest, since
this parameter controls the spatial dimensionality of the
magnetic system. Previous determinations of J /J& in
KFeS2 have been reported by several authors. ' ' Ac-
cording to Ref. 14, g=

~

J'/J~
~

-4&&10, presuming
linear-spin ordering. In Ref. 13, however, a much larger
value is obtained: g-4&(10 . This discrepancy mainly
comes from different estimations of J~. 1000 K in Ref.
14 and 66 K in Ref. 13. Results in Ref. 15 give inter-
rnediate values J~ ——245 K and g-=8.6)&10 . It follows
that previous determinations of J~ and q differ by 2 or-
ders of magnitude, so that these parameters can still be
considered as unknown.

The purpose of this paper is to report magnetic suscep-
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high-temperature behavior of X(T) up to 800 K, with em-
phasis on a maximum of X(T) at T-700 K. In this pa-
per, we only consider the low-temperature regime in the
range 4.2 & T& 300 K.

A. Magnetic behavior above the freezing temperature

In the upper range 250& T& 300 K a Curie-gneiss law
is satisfied, as can be seen in Fig. 2, and we can write

X(T)= C

0 K' ~ Fe3' 0 S
FIG. 1. Magnetic structure of KFeS2, after Ref. 12.

with C the Curie constant which we can express as

P Ps2 2

3k'
(2)

tibility measurements on KFeS2. Our experimental results
are then analyzed using the molecular-field approximation
and the Green's-function method as well as the refined
molecular-field theory for the Heisenberg model, in order
to deduce the exchange parameters.

II. EXPERIMENTS

The crystals have been formed by fusing nonoxidized
Fe with sulfur and potassium carbonate and leaching the
cold product in water. Large single crystals have been
grown using the Bridgeman method. ' Our samples were
characterized by x-ray diffraction.

The measurements of the temperature dependence of
the magnetic susceptibility X(T) have been carried out us-
ing a Faraday balance for different samples. The results
are reproducible and reported in Fig. 2. They are at vari-
ance with previous results obtained by Bronger, ' but
agree, at least qualitatively, with data reported in Ref. 13.
The studies in Ref. 13 have been essentially focused on the

300

200--

where p is the effective number of Bohr magnetons pz
carried by the magnetic ions, and kz is the Boltzmann
constant. In the case of Fe + ions in the state S5&z, the
theoretical value of p is

p, =g [J(J+I)]'~2=5.9 (3)

since the Lande factor is g=2, and the angular momen-
tum J=S= —,'. From the fit of the experimental data by
Eq. (1), it is possible to derive an effective value p, for the
parameter p entering Eq. (1). The result is

p~ 2.5 . (4)

This value is much smaller than p, and in good agreement
with the value 2.4 deduced from neutron experiments. '

Since the experimental value p, in salts of the iron is quite
close to p„ the very low value of p, in KFeS2 is a specific
property of this compound. In particular, it has been ar-
gued, on the basis of multiple scattering Xa molecular-
orbital calculations, that a large spin-down electron densi-

ty is transferred froin the 3p orbitals of sulfur to Fe +
sites. 's The main difference between the actual configura-
tion of iron in FeS4 and a Fe + free ion, as a result of
the covalent Fe—S bond, is the partial occupation of the
3d and the 4s shells. The 4s shell, however, is not signifi-
cantly polarized, since the 4s t and 4s l populations are al-
most equal (-0.42). ' The relevant effect which modi-
fies the magnetic properties is then the number N, of
electrons transferred from the sulfur into the 3d t states.
In first approximation we can take this effect into account
by replacing S= —,

'
by an effective spin

E
O

I
a
E 100--

CO t
T2

S'=S N, /2 . —
Therefore, we can write

p. =g"[S'(S'+ l)l'"

(5)

(6)

e

100 200 300
T (K)

FIG. 2. Inverse of the magnetic susceptibility as a function of
temperature for KFeS2. 0 is the paramagnetic Curie tempera-
ture. The dashed curve is the extrapolation of the Curie-Weiss
Iaw. The solid curve is experimental and departs from the
Curie-Weiss law at the transition temperature T&. An anomaly
is evidenced at T2.

with g' the effective Lande factor, to take into account
possible orbital momentum effects associated with the
partial occupation of the 3d shell. A very similar effect
has been studied in europium chalcogenides where Eqs. (5)
and (6) have been used to account quantitatively for the
magnetic susceptibility data in these materials. ' In the
present case, however, we could not account quantitatively
for the experimental value p, unambiguously. One possi-
bility is to suppose that the electron in the 3d bands are in
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a pure spin state, with their orbital momentum completely
quenched by the crystal-field interaction. In that case,
g'=2. This assumption is supported by the EPR mea-
surements of the Lande factor in KFeSq. Nevertheless,
the value of N, deduced from Eqs. (4)—(6) with g'=2 is
N, -3.30, much larger than the value N, —1.1 deduced
from the spin-polarized calculation in the Slater Xa
local-exchange approximation. ' Another possibility is to
suppose that N, = 1.1, in agreement with Ref. 18, but then
the value of g' deduced from Eqs. (4)—(6) is g'-1 and
this should be observed by EPR measurements.

According to Eq. (5}, N, =3.30 and 1.1 lead to
S'=0.85 and 1.95, respectively, which represent two ex-
trernal values of these parameters S':

9 9--
0
E

0.85 &S'& 1.95 . (7)

Note that the low value of p, is also consistent with the
observed low-hyperfine-field value H~ -215 kG from the
Mossbauer experiments. ' ' ' However, it is difficult, from
the Mossbauer experiments alone, to deduce a value of p,
or N„because a partial contribution of the zero-point
spin fluctuations in the reduction of Hr, cannot be pre-
cluded.

9.5 I

5
I

10 15 2Q

T (K)
FIG. 3. Magnetic susceptibility as a function of temperature

in the vicinity of the temperature T2,' we attribute this to a
three-dimensional magnetic ordering.

u (K)=cothK —1/K,
K = —2JiS'(S'+ 1)/krr T .

(8)

B. Magnetic behavior below the freezing temperature

We can define the ordering temperature Ti as the tem-
perature at which a deviation from the Curie-Weiss law
takes place, with the onset of a strong curvature of the ex-
perimental curve X(T): Ti ——250+5 K. The rather large
uncertainty in the determination of Ti arises from the ab-
sence of any sharp anomaly of X(T) at TI, in accordance
with previous results, ' ' which is a typical behavior of
one-dimensional antiferromagnets. This value of Ti is in
good agreement with those obtained from neutron experi-
ments ' Ti-250 K from Mossbauer experiments'
and Ti -245 K from electron-spin-resonance experi-
ments. At a lower temperature, T2 ——12.5 K, an anoma-
ly in the X(T) curve is observed, which. has not been re-
ported previously (Fig. 3). This anomaly may be associat-
ed with a long-range three-dimensional antiferromagnetic
ordering. Theoretically, a one-dimensional system with
short-range interactions should not have three-
dimensional long-range order at finite temperature as high
as 245 K. Our data are qualitatively similar to those ob-
served in the uniaxial crystal tetrarnethyl ammonium
manganese trichloride [(CH& }4NMnC13, or TMMC],
which is the classical example of a one-dimensional mag-
netic system with a three-dimensional phase transition at
the Neel temperature 0.84 K. The theory of the magnet-
ic susceptibility in such materials was developed some
years ago for an isotropic linear-chain Heisenberg antifer-
rornagnet. ' The model for such an interaction was
solved in the limit S~ 00, and also for S= —,', and was

further modified to apply to a spin S = —,'. The sus-

ceptibility P is then given by
C 1+u(X)
T 1 —u(k)

Equation (8) is the expression derived in Ref. 26, with S
replaced by S' as given by Eq. (7), to take covalent effects
into account. To derive this expression of X(T), it is sup-
posed that the interchain exchange interaction is negligi-
ble and that the short-range intrachain exchange interac-
tion is restricted to nearest neighbors; then there is only
one exchange integral„Ji, entering Eq. (8). Since the
Fe + spins are coupled antiferromagnetically along the
chains, ' ' Ji is positive.

At high temperatures, the leading terms in Eq. (8)
match the result of Rushbroke and Wood and then X(T)
satisfies the Curie-Weiss law. The paramagnetic Curie-
Weiss temperature 8 defined in Eq. (1) is given by

8=- -', J,S'(S'+1)/k& . (9)

Although Eq. (8) with S'=S has proved suitable to repro-
duce experimental data for

'

some antiferromagnetic
chains, ' we did not obtain a satisfactory fit to the ex-
perimental curve X(T) in the present case. In particular, a
positive value of Ji implies that 8, in Eq. (9), is negative.
To the contrary, the experimental value of 0 is positive:
8-+70 K, which implies a ferromagnetic component to
the magnetic susceptibility ignored in Eq. (8). Also, Eq.
(8) always leads to a broad maximum of the theoretical
curve X(T) at T- Ti. To the contrary, the experimental
curve decreases monotonically as a function of tempera-
ture. Nevertheless, a marked curvature of the experimen-
tal X(T) curve takes place at T-Ti, so that the absence
of any broad maximum may also be attributable to a
monotonic ferromagnetic component to the magnetic sus-
ceptibility which we propose now to calculate by different
theoretical approaches.
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III. THEORETICAL MODELS

A. Molecular-field approximation (MFA)
' The existence of a ferromagnetic contribution to the

magnetic properties of KFCSI has already been reported
by authors ' who attributed this effect to impurities. It
must be noticed, however, that positive values of 8 imply
that the ferromagnetic contribution to X(T) is of the
Curie-%'eiss type. Noninteracting impurities only give a
Curie-type contribution, proportional to T, which does
not account for a positive value of O~. It does not seem
realistic to assume that the alnount of magnetic impurities
is so large that they can interact between themselves.
Therefore, we can presume that the ferromagnetic com-
policllt of thc Inagllcflc llltcractloils is Rn Intrinsic plopci'-
ty of the material. Such ferromagnetic interactions can
take place between next-nearest neighbors (NNN's) along
the e axis, with the exchange constant J2, or between
third-nearest neighbors (interchain coupling J'). Since
there are superexchange pathways along the chains, Jz
may be large and of the same order of magnitude as J,.
To the contrary, . the metal-ligand chain is effectively
separated from all its neighbors by the potassium ions, so
that the interchain interaction J is essentially dipolar in
nature. Therefore, we'can expect that J' &&JI,JI. In that
case, 0 takes the form

B. Refined molecular-field approach

Despite a good experimental linearity of X ' versus T,
short-range spin correlations, neglected in the MFA, can
be observed even at room temperature in linear-chain anti-
ferromagnets. In the refined molecular-field theory
which takes these spin correlations into account, the intra-
chain (Ji ) and interchain ( J') exchange interactions and
their ratio (Il ) are given by

exp =(4+ZI1)/(ZII), II=
i
J'i/i Ji i,

kII T~
(14)

For this value of Jl, in the range predicted by the crude
molecular-field approximation defined in Eq. (11), Eqs.
(9) and (10) give J' =3.3 K, J2/kII ——41.9 K, and
S'=1.26. Equations (14) and (15) with T& ——12.5 K and
Z=4, yields Il -0.02, which is of the same order of mag-
Qltude as the results discussed above.

where Z is the number of neighbors in the ab plane. For
Heisenberg antiferromagnetic chain with Jz ——0, it has
been established that J1 kII T (——X,„)/10.6, with
T(X,„) the temperature at which X(T) is maximum. If
we assume, as discussed above, that the main effect of the
ferromagnetic interactions is only to smear this maximum
at Ti, we can estilnate Ji -kII Ti/10. 6. We then have

f

Jl/kli ——23.6 K . (15)

T 4S'(S'+1) (J J )
3k

(10)

Wc cali deduce Ji Rlld Jg f loni Eqs. (9) Rild (10) wltll
T, -250 K and 8-70 K for S' in the admits fixed in Eq.
(7). We obtain

with the convention J2 & 0 for a NNN ferromagnetic cou-
pling and Ji )0 for a nearest-neighbor (NN) antifer-
romagnetic coupling. The one-dimensional antiferromag-
netic ordering along the e axis takes place at a tempera-
ture Tl, which, in the molecular-field approximation, is
given by

C. Green's-function techniques

A one-dimensional system with short-range interactions
can have no long-range order at finite temperatures;
hence, any ordering effect must be attributed to interchain
coupling. The most reliable estimates of Tiv in terms of
J' probably comes from random-phase approximation
(RPA) and other Green's-function schemes. These may
be put in the form

kii TN /Ji ———,
' S'(S'+ 1)f/I

where S has been replaced by S' to take covalent effects
into account, and

11.7 (JI /kII (43 K, 20.9(J2/kII & 76.8 K . (11)

A three-damenslonal ordering ls expected at a temperature
Tz given in the molecular-field approximation by
TI ——4S'(S'+ 1)J'/3kII.

For T2 —12.5 K, we have

I=N 'g [1—j(q)/J(0)]

J( q)= g JJe

(17)

1.6»J'/kII (6 K . (12)

The ratio Il=J'/(Ji+JI) which measures the degree of
one dimensionality of the system does not depend on S' in
this model and is equal to

=T'==0.05 .Jj +J2 T (13)

These values are of the same order of magnitude as the re-
sul'ts of ToIIlkowlcz er Ql. , wllo cstl111atcd Ji /klan 66
K, J'-2.64 K, and J'/Ji ——II =0.04 from the analysis of
their data in the framework of models which assume
J2 ——0. Il = [0.54( kII T~ /J, )][S'(S'+ 1)] (18)

is the Fourier transform of the exchange interaction. The
quantity f is a factor which depends on the decoupling of
the equations of motion for the Green's functions. In the
random-phase approximation, f=1. Equations (16) and
(17) were first applied successfully to the linear-chain an-
tiferromagnet Cu(NH&)&804, HIO by Oguchi. If JI-O,
I is simply a function of Il=J'/J, . Since Il is very small,
I(I1) in Eq. (17) can be replaced by its asymptotic limit, '

I(77) 0.64/I/II, w11lcll CRI1 bc inserted 111 Eq. (16) to glvc
the RPA expression
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Equations (7), (15), and (18) with T~ ——12.5 K give

2)&10 &g &3.3~10 (19)

Other expressions for f have been obtained for other
decouplings of the equations of motions. Tahir-Kheli
has suggested

S' —1 I—1

3S' I (20)

to obtain agreement with Pade approximants for the criti-
cal temperature in cubic ferromagnets. Once again, S has
been replaced by S' with respect to the original formula.
Green's-function theories, rigorously correct for classical
spins, predict the same ordering temperature for fer-
romagnetic and antiferromagnetic interactions. Rush-
brooke and Wood have shown there is about a 13%
difference between Curie and Neel temperatures in the
case of a spin- —,, simple-cubic lattice. This difference

drops to 1.3% for spin —,'. Since S' & —,', there should not
be a serious error in applying Eq. (24) to an antiferromag-
net. With f given by Eq. (20) instead of unity, Eqs. (18)
and (19) are replaced, respectively, by

2.88k~ T~ (S'+ 1)(4S'—1)

+ (S'+1) (4S' —1)

and

(21)

1.5)& 10 & g &2.87)& 10 (22)

Note that the range determined in the RPA [in Eq. (19)]
is included in that of Eq. (22) in the Tahir-Kheli model.

In principle, the Green's-functions method, which con-
tains the wave-number vector, takes the crystal structure
into account more precisely than the inolecular-field
models which contain only the number of neighbors Z.
In our particular case, however, the Green's-function
methods fail to give an accurate determination of il be-
cause g depends strongly on S'. This can be seen from
Eqs. (18) and (21), which, in the limit of large S', give
i1 &x(S') . Note that in the particular case S'=1.26 (see
end of Sec. IIIB), Eq. (21) gives g=6&&10, while Eq.
(18) gives g=1.0X10

IV. DISCUSSION

From the analysis of the magnetic susceptibility as a
function of temperature using the molecular-field and
Green's-function methods, it has been possible to find the
order of magnitude of the exchange parameters in KFeSq.
We find that the interchain exchange constant J' is in the
range 1.6 &J'/kz & 6 K, and that the ratio i) of the inter-
to intrachain exchange constants which measures the de-
gree of one dimensionality of this system is g-10
These results, in agreement with those of Refs. 13 and 15,

seem more reliable than the values Ji/kii —1000 K and
i) = 5 &( 10 reported in Ref. 14. The intrachain exchange
constants are thus much larger than the interchain ex-
change constant, emphasizing the one-dimensional nature
of this system.

Based on the molecular-field model one could propose,
in KFeSi, the situation

~
Jz ( ) ~

Ji
~

with Ji and Jz the
NN and NNN intrachain exchange constants, as also pro-
posed for some three-dimensional antiferromagnets such
as EuTe. However, the inadequacy of the molecular-
field model, which excludes short-range effects, has been
noted in linear-chain antiferromagnetic systems. Fer-
romagnetic impurities have also been suggested to strong-
ly influence the susceptibility measurements in KFeSi.
Although their effects have probably been overestimated
in previous works, they may influence quantitatively the
exchange constants Jz derived in this paper. Therefore,
we do not make any definite conclusion herewith regard-
ing the relative strength of NNN intrachain exchange
constants.

The large discrepancies between values of Ji deduced
from neutron experimental data, ranging from 66 (Ref.
13) to 245 K (Ref. 15), evidence the difficulties met to
determine this parameter. Note that the lower value of Ji
in our present work, with respect to Ref. 13, comes from
the fact that we did not make the approximation Jz ——0.
Also, the value Ji /kii -254 K —T, is the consequence of
the assumption T~ Ti in Ref——. 15. To the contrary, the
values of the exchange constants we have derived in this
paper suppose that T~ is the one-dimensional ordering
temperature, with the spins ordering antiferromagnetical-
ly along the c axis.

This is the ma&n disagreement between our analysis and
previous analyses of neutron experiments' '5 or of mag-
netic susceptibility measurements, ' assuming that T& is
the Neel temperature T~ at which the three-dimensional
ordering occurs. Such a high value of T~-250 K, how-
ever, would be very surprising because long-range magnet-
ic ordering does not occur at finite temperature in one-
dimensional chains with short-range magnetic interac-
tions. The small value of i1 in KFeSi evidence a large an-
isotropy of the exchange interactions and the quasi-one-
dimensional nature of this system. Indeed, the value of
Tz ——12.5 K measured in this work is in better agreement
with the expected and usually observed low values of Tz
in quasi-one-dimensional systems. Also, the absence of
any marked singularity near 250 K in the susceptibility
curve is typical of the behavior predicted for one-
dimensional antiferromagnetic transition, and it is associ-
ated with the influence of magnetic coupling along indivi-
dual chains of iron ions upon the bulk susceptibility.

It is possible, however, that strong spin correlations be-
tween the chains take place at T~. Such correlations de-
pend in fact on the easy axis of magnetization. If the
spins are polarized in a plane perpendicular to the c axis,
adjacent spins in the ab plane have the possibility of being
canted by a small angle 8, wi.th a low cost in energy.
Therefore, the interchain spin correlations will be smaller
at T~. This is roughly the case in TMMC. To the con-
trary, if the spins are aligned along the c axis, there are
two spin configurations for adjacent spins in the ab plane,
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namely t and l. This last configuration, however, is asso-
ciated with a higher energy since 8-180'. Therefore the
configuration t has a higher probability and the inter-
chain spin correlations will be stronger in this case. The
spin arrangement in KFeS2 is close to this last case. The
angle between the magnetic moments and the c axis is
small: 0-13.6'. ' The strong interchain spin correla-
tions, which are expected to take place at T~ in this con-

figuration', might explain the neutron experimental data,
rather than an interchain magnetic ordering.

We now propose to make low-temperature anisotropic
measurements using specific heat, magnetic susceptibility,
neutron scattering, and other experimental techniques in
order to further elucidate the nature of the, magnetic or-
dering and exchange constants in this interesting one-
dimensional system.
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