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Abstract 

All ceramics and powder metals, including the ceramics components that Sandia 
uses in critical weapons components such as PZT voltage bars and current stacks, multi- 
layer ceramic MET’S, ahmindmolybdenum & alumina cermets, and ZnO varistors, are 
manufactured by sintering. Sintering is a critical, possibly the most important, processing 
step during manufacturing of ceramics. The microstructural evolution, the macroscopic 
shrinkage, and shape distortions during sintering will control the engineering 
performance of the resulting ceramic component. Yet, modeling and prediction of 
sintering behavior is in its infancy, lagging far behind the other manufacturing models, 
such as powder synthesis and powder compaction models, and behind models that predict 
engineering properties and reliability. In this project, we developed a model that was 
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capable of simulating microstructural evolution during sintering, providing constitutive 
equations for macroscale simulation of shrinkage and distortion during sintering. And we 
developed macroscale sintering simulation capability in JAS3D. 

The mesoscale model can simulate microstructural evolution in a complex powder 
compact of hundreds or even thousands of particles of arbitrary shape and size by 1. 
curvature-driven grain growth, 2. pore migration and coalescence by surface diffusion, 3. 
vacancy formation, grain boundary difhsion and annihilation. This model was validated 
by comparing predictions of the simulation to analytical predictions for simple 
geometries. The model was then used to simulate sintering in complex powder compacts. 
Sintering stress and materials viscous moduli were obtained from the simulations. These 
constitutive equations were then used by macroscopic simulations for simulating 
shrinkage and shape changes in FEM simulations. 

The continuum theory of sintering embodied in the constitutive description of 
Skorohod and Olevsky was combined with results from microstructure evolution 
simulations to model shrinkage and deformation during. The continuum portion is based 
on a finite element formulation that allows 3D components to be modeled using SNL's 
nonlinear large-deformation finite element code, JAS3D. This tool provides a capability 
to model sintering of complex three-dimensional components. The model was verified 
by comparing to simulations results published in the literature. The model was validated 
using experimental results from various laboratory experiments performed by Garino. 
In addition, the mesoscale simulations were used to study anisotropic shrinkage in 
aligned, elongated powder compacts. Anisotropic shrinkage occurred in all compacts 
with aligned, elongated particles. However, the direction of higher shrinkage was in 
some cases along the direction of elongation and in other cases in the perpendicular 
direction depending on the details of the powder compact. In compacts of simple- 
packed, mono-sized, elongated particles, shrinkage was higher in the direction of 
elongation. In compacts of close-packed, mono-sized, elongated particles and of 
elongated particles with a size and shape distribution, the shrinkage was lower in the 
direction of elongation. 

We also explored the concept of a sintering stress tensor rather than the traditional 
sintering stress scalar concept for the case of anisotropic shrinkage. A thermodynamic 
treatment of this is presented. A method to calculate the sintering stress tensor is also 
presented. 

A user-friendly code that can simulate microstructural evolution during sintering 
in 2D and in 3D was developed. This code can run on most UNIX platforms and has a 
motif-based GUI. The microstructural evolution is shown as the code is running and 
many of the microstructural features, such as grain size, pore size, the average grain 
boundary length (in 2D) and area (in 3D), etc. are measured and recorded as a function of 
time. The overall density as the function of time is also recorded. 



CONTENTS 
Microstructural and Continuum Evolution Modeling of Sintering .................................. 
Abstract ......................................................................................................................... 3 

CONTENTS .................................................................................................................... 5 

Introduction ................................................................................................................. 7 
Chapter 2 ........................................................................................................................ 10 

Numerical Simulation of Solid State Sintering I: Sintering of Three 
Particles ...................................................................................................................... 10 

Abstract .................................................................................................................... 10 
Introduction ............................................................................................................. 10 
Model Description ................................................................................................... 11 
Results and Discussion ............................................................................................ 14 
Conclusions .............................................................................................................. 19 

Chapter 3 ........................................................................................................................ 21 
Numerical Simulation of Solid State Sintering 11: Sintering of a Powder 
Compact ...................................................................................................................... 21 

Abstract .................................................................................................................... 21 
Introduction ............................................................................................................. 21 
Potts Model .............................................................................................................. 22 

The jump algorithm ................................................................................................ 24 
The shift algorithm ................................................................................................. 25 
The shift-with-minimization algorithm ................................................................. 25 
Comparison of the three algorithms ..................................................................... 26 
Discussion and conclusions .................................................................................... 32 
References ................................................................................................................ 34 

Chapter 1 .......................................................................................................................... 7 

Model development for microstructural evolution with densification ............... 24 

Chapter 4 ........................................................................................................................ 37 
Connecting Microstructural Evolution and Macroscopic Constitutive 
Models ......................................................................................................................... 37 

Isotropic slntering ................................................................................................... 37 
Anisotropic sintering .............................................................................................. 38 
References ................................................................................................................ 46 

Chapter 5 ........................................................................................................................ 47 
Three-Dimensional Simulation of Sintering Using a Continuum Modeling 
Approach .................................................................................................................... 47 

Abstract .................................................................................................................... 47 
1.0 Introduction ....................................................................................................... 47 
1.1 Skorohod-Olevsky Viscous Sintering Constitutive Relationship ................. 47 
1.2 The Linear Viscous Case .................................................................................. 48 
1.3 Integration of the Constitutive Model ............................................................. 49 
2.0 Verification ........................................................................................................ 50 
2.1 Uniaxial Bar - Sinter-Only .............................................................................. 51 
2.2 Uniaxial Bar - Sinter-Forge ............................................................................. 52 

. .  
. .  

5 



2.3 Sphere . Sinter-Only ........................................................................................ 52 
2.4 Numerical Performance of FEM Implementation ......................................... 53 
3.0 Validation With Experiments .......................................................................... 53 
3.1 Bi-Layer Bar Experiment ................................................................................. 53 
3.2 Bi-Layer Disk Experiment ............................................................................... 54 
4.0 Summary & Conclusions .................................................................................. 55 
References ................................................................................................................ 55 

Chapter 6 ........................................................................................................................ 56 
Numerical Simulation of Anisotropic Shrinkage in a 2D Compact of 
Elongated Particles .................................................................................................. 56 

Abstract .................................................................................................................... 56 
1.0 Introduction ....................................................................................................... 56 
2.0 Model and Simulation Method ........................................................................ 57 
3.0 Analytical Solution ........................................................................................... 60 
Results ...................................................................................................................... 62 
4.1 Model verification by comparison of simulation results to the analytical 
solution ..................................................................................................................... 62 
4.2 Simulation of sintering in other compacts of elongated particles ................. 65 
5.0 Discussion ........................................................................................................... 69 
6.0 Conclusions ..... ........ ............................................................. 70 

6 



Chapter 1 
Introduction 

Veena Tikare, Michael Braginsky and J. Guadalupe Arguello 

Sandia manufactures and uses many ceramic components for nuclear weapons, 
including PZT voltage bars and current stacks, multi-layer ceramic MET'S, 
alumindmolybdenum & alumina cermets, and ZnO varistors. All these ceramics are 
manufactured by consolidating powders usually by compaction and then sintering the 
powder compacts. Sandia recently has made exceptional progress in understanding and 
controlling powder compaction through an integrated materials characterization, 
computer modeling, and validation program. However, while of equal or greater 
importance in manufacturing, the ability to predict and control sintering is still in its 
infancy because the process is so much more complex. We have developed a set of 
computational tools, which will enable the manufacturing of complex ceramics by 
predicting structural changes during sintering by incorporating an understanding of the 
microstructural aspects of sintering into a continuum model. 

Sintering is the process by which a compact of individual powder particles weakly 
held together by inter-atomic forces is fused to form a strong monolithic piece. A powder 
compact, which typically has 30% to 40% porosity by volume, is sintered by heating it to 
high temperatures where mass transport between the particles occurs to form a single 
piece with structural integrity and with other desirable engineering properties. During 
sintering the porous powder compact will shrink to < 5% porosity and have grains that 
can be as much as 1 or 2 orders of magnitude larger than the starting particle size. The 
shrinkage and microstructural changes can lead to significant deformation in the powder 
compact, often with catastrophic changes that make the component unusable. 

A typical, commercially available multi-material, multi-layer ceramic substrate is 

Figure 1. Schematic diagram of a multi-material, 
multi-layer ceramic substrate inductors, resistor 

shown in figure 1. This 
components is 50 mm x 50 

between 35 and 50 layers of 
alumina with metal 
interconnects that are 3 to 5 
pm thick screened on each 
layer. It also has embedded 
components such as the 
capacitor shown in the figure 
and can also have embedded 
inductors and resistors. 
Dimensional tolerances on 
such ceramics are very tight, 
iemanding excellent control of 
shrinkage and distortions 
during sintering. However, the 

mm x -10 and has 



ability to predict and control the shape distortions during sintering is poor. Currently, 
industrial and Sandia manufacturers must spend large amounts of resources to develop 
the sintering cycle of each component by trial and error. Small changes in the design of 
each component require a long and costly development cycle. 

We have integrate theory, mesoscale modeling and continuum modeling to 
fundamentally advance our understanding of sintering and our ability to predict macro- 
and microscopic evolution of the structure in a sintering body. The Potts Monte Carlo 
model, a statistical-mechanical model, was used to simulate densification, coarsening, 
diffusion, pore coalescence and migration to simulate microstructural evolution during 
sintering. We have a developed an novel algorithm to incorporate desification by 
annihilation of vacancies. This model is a rigorous scientific method that can make the 
problem of treating thousands of sintering particles tractable on a workstation class 
computer. Other models currently available for simulating sintering cannot be adapted to 
solve microstructural evolution on a large scale. 

The past and current work in sintering can be divided into two large categories. 
One set of work treats the microstructural evolution of two or three particles during 
sintering in great detail'*. This body of work considers driving forces, transport 
mechanisms, kinetic factors and geometry to give detailed information about the shapes 
of the particles and sintering rates during various stages of sintering. Half a century later, 
current microstructural models of sintering3 still consider a limited number of particles 
with idealized shapes. While today's models give more accurate results, they fail, like 
their predecessors, to treat a macroscopic sintering piece - what is the shape change of, 
density distribution in, and stress state in a large body? 

The second set of work treats the evolution of a macroscopic sintering body. That 
work considers the sintering part to be a continuum body and applies continuum 
deformation mechanics to the sintering body to predict shrinkage and shape change. 
However, the constitutive laws describing sintering of real crystalline materials systems 
are unknown. Therefore, application of continuum mechanics to sintering real materials 
systems has been largely unsuccessful4, despite tremendous improvements in continuum 
simulation numerical capabilities in recent years. 

The model we have developed has the unique capability to bridge the gap 
between the microstructural models and the continuum models to give an integrated 
approach to understanding sintering on multiple scales. The kinetic, Monte Carlo model 
for simulation sintering is a rigorous, science-based model with all the necessary 
materials physics to predict sintering behavior of a porous body. These mesoscale 
simulations of sintering provide two important results, (1) constitutive equations used in 
continuum models to predict shrinkage and shape change of a sintering powder compact 
and (2) microstructures of sintered compacts for engineering properties evaluation. We 
have also developed finite element capability to incorporate the constitutive equations 
generated by the mesoscale model. The integrated capability enables us to predict the 
shrinkage and shape distortions in a sintering component. 



Various aspects of the model are presented in subsequent chapters of this 
document. Chapter 2 presents the mesoscale model and its validation by comparison to 
an analytic solution of three particles sintering. Chapter 3 demonstrates how the 
mesoscale model can be extended to treat multiple particles. Chapter 4 derives the 
thermodynamic basis for obtaining sintering constitutive relationship from mesoscale 
simulations for use in continuum simulation. Chapter 5 shows the how the macroscopic 
simulations of sintering can be done using Sandia's in house code, JAS3D. Finally, 
Chapter 6 treats the problem of aniostropic shrinkage in powder compacts of elongated 
particles. These chapters provide an overview of the capabilities we have developed 
while working on the LDRD project. They also demonstrate how the model can be used 
to study a host of sintering problem 

G.C Kuczynski, J. Appl. Phys. 21,632 (1950); W.D. Kingery andM. Berg, I. Appl. Phys. 26,1205 
(1955); R.L. Coble, 1. Am. Ceram. SOC., 41 55 (1958); M.F. Ashby, Actametall., 22 275 (1974) 

'Zeng et al., Mat.Sci.&Eng., A252, 301(1998); Pan et al., Acta metall., 13, 4671 (1998); Zhou & Derby, 
JACerS, 81,478 (1998); Bullard, J. Appl. Phys., 81, 159 (1997); Zhang & Scheibel, Acta metall, 43,4377 
(1995) ; Jagota & Dawson, Acta metall., 36,2551 (1988) 
' R.K. Bordia and G.W. Scherer, Acta metall. 36,2393 (1988); E.A. Olevsky, Mat. Sci. & Eng., R23,41 
(1998); A.C.F. Cocks, Acta metall, 42,2191 (1994); J. Svoboda, H. Riedel and H. Zipse, Acta metall., 42, 
435 (1994); H. Riedel, H. Zipse, J. Svoboda, Acta metall., 42 445 (1994). 

I 

2 



Chapter 2 
Numerical Simulation of Solid State Sintering I: Sintering of Three Particles 

Veena Tikare, Michael Braginsky and Eugene A. Olevsky 

Abstract 

sintering in a 2D system of three particles, has been presented. The model can simulate 
several mechanisms simultaneously. It can simulate curvature driven grain growth, pore 
migration and coarsening by surface diffusion, and densification by diffusion of 
vacancies to grain boundary and annihilation of these vacancies. Morphological changes 
and densification kinetics are used to verify the model. 

Introduction 

materials is difficult. In the simplest case of isotropic energies, single-component, single- 
phase systems it is still very complex because the details of local geometry are critical in 
the way they influence thermodynamics and kinetics. Predictions of microstructural 
evolution were first attempted starting in the 1940's by many. Frenkel treated sintering 
as a viscous flow phenomena'. Kuczynski treated it as a diffusive process*. This 
diffusive approach was adopted by many to refine solid state sintering theories. In 
general these theories ' ' ' ' ' assumed highly idealized geometries of two or three 
spherical particles or spherical particles on a plate with a number of diffusion paths to 
analytically predict shrinkage rates. A couple of other simple geometries were also 
treated9. While microstructural evolution and shrinkage rates were predicted by these 
models, the biggest accomplishment of these models is that they provided insight into the 
thermodynamics that drives sintering and the influence of transport mechanism that 
control sintering kinetics. The other big accomplishment of these investigators was the 
understanding of the role of grain boundaries as the sink for vacancies by annihilation'0s1' 
due to stresses on grain boundaries exerted by the pores at the grain junctions'. 

A kinetic, Monte Carlo model, capable of simulating microstructural evolution 

Prediction of microstructural evolution during solid state sintering of crystalline 

The prediction of microstructural evolution during sintering continues to be of 
great interest. Many numerical simulation techniques have been developed in recent 
years to study sintering. These include finite element methods", a micromechanical 
approachI3, molecular dynamics simulations14, continuum thermodynamics 
 solution^'^"^^'^ and unit cell solutions18. These models continue to provide insights and 
more accurate solutions to this problem. However, they are still simulations of small, 
highly simplified systems with limited number of particles. Furthermore, they are not 
readily extendable to larger, more complex systems consisting of hundreds of particles 
and therefore limited in their applicability for the study of real systems. 

In this paper, we present a kinetic, Monte Carlo model that can simulate sintering 
in a three-particle system. We make no a priori assumptions about the geometry of the 
system such as the curvature of the neck or the curvature of the particles; rather the three- 
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particle system is allowed to evolve under conditions similar to that during sintering. The 
model is very similar to ones used in the past to simulate many microstructural evolution 
processes including normal grain growth in single-phase materials , abnormal ain 

and final-stage ~intering~’,~ . It has been adapted here to simulate all stages of sintering 
by adding an algorithm that simulates the formation, diffusion and annihilation of 
vacancies, which distinguishes it from the previous work of Hassold et aiz7. They 
modeled final stage sintering by determining the mean distance between pores and 
eliminating pore sites with a frequency that was in proportion to the mean distance 
between pores. In this work, vacancies formation, diffusion and annihilation are 
simulated. We demonstrate the model and its utility by applying it to simulate sintering 
in a simple geometry. Future work will extend the simulation capability to much larger 
systems with hundreds of particles. 

19,20,21 

growth, recrystallization2*, fhase ~eparat ion~~,  Ostwald ripening 24, pore migration 8 2 6  

Model Description 
Consider the classical three particle-sintering problem modeled by many previous 

researchers. In this system, all three particles are circular and of the same size. Sintering 
in such a system occurs by diffusion of material into the pore, diffusion of vacancies from 
the pore to the grain boundary and annihilation of the vacancies at the grain boundary. 
M u r ~ h ~ ~  has shown that diffusion can be simulated by random walk in kinetic Monte 
Carlo models. Furthermore, simulation of long range diffusion in microstructural models 
similar to the one used here has been shown previously in other 
introduce a new algorithm for vacancy annihilation in this work. This vacancy 
annihilation is applied to the three circular particles sintering geometry to demonstrate 
that the kinetic Monte Carlo model can simulate sintering. 

We 

The model presented here is limited to consideration of the following geometry and 
processes: 

Three circular particles of equal size sintering as shown in figure 1. 
Grain growth by short range diffusion of atoms from one side of the grain 
boundary to the other; 
Long range diffusion of material to pores by grain boundary diffusion and 
along pore surfaces by surface diffusion; 
Vacancy annihilation at grain boundaries. 

In the model, an ensemble of grain sites and pore sites is allowed to populate a square 
lattice. We consider three grains sintering, therefore grain sites can assume one of three 
distinct, degenerate states, qgrarn = [I, 2, 31. The pore sites can assume only one state, 
qPore= - I .  Contiguous grain sites of the same state q form a grain and contiguous pore 
sites form a pore. Grain boundaries exist between neighboring grain sites of different 
states, q, and pore-grain interfaces exist between neighboring pore and grain sites. The 
equation of state for these simulations is the sum of all the neighbor interaction energies 
in the system given by 



Equation 1 

where N is the total number of sites, 6is the Kronecker delta with 6(q, = q,) = I and q q ,  
.sJ = 0, qi is the state of the grain or pore at site i and q, is the state of the nearest 
neighbor at sitej. Thus, the only energy considered in the simulation is the interfacial 
energy and all unlike neighbors contribute one arbitrary unit of energy to the system. As 
pore sites can assume only one state, qpore= -1, there are no pore boundaries and all pores 
sites coalesce. In contrast, grain sites can assume many states making grain boundaries 
possible. This yields a two-component, two-phase system with uniform, isotropic 
interfacial energies between grains and between grains and pores. 

Grain growth is simulated using the method developed in previous  work^'^*^'. 
First a grain site is chosen at random from the simulation space. Then a new state q is 
chosen at random from the three possible states in the system. The grain site is 
temporarily assigned the new state and the change in energy is evaluated using equation 
1. Next the standard Metropolis algorithm3' is used to perform the grain growth step 
based on Boltzmann statistics. A random number, R, between 0 and 1 is generated. The 
transition probability, P, is calculated using 

ex($) for f f i > o  

1 ,for A E I  0 
Equation 2 

where k~ is the Boltzmann constant and Tis the simulation temperature, a variable that 
defines the degree of thermal fluctuation in the system. If the R SP, then the grain 
growth step is accepted, if not, the original state is restored. The simulation temperature 
used for rain growth was ksT= 0, which has been shown to simulate grain growth 
correct1 j1 . 

Pore migration is simulated using conserved dynamics, so that the total number of 
pore sites and grain sites is the same after a pore migration step. A pore site is chosen 
and next a neighboring grain site is chosen. The two sites are temporarily exchanged 
with the grain site assuming a new state q where q results in the minimum energy. This 
minimum-energy, pore-grain exchange simulates pore migration by surface diffusionz5. 
The change in energy for this exchange is calculated using equation 1 and again the 
standard Metropolis algorithm is used to perform the pore migration step using equation 
2 to determine the transition probability. The simulation temperature used for the pore 
migration step was kBT = 0.7. This higher temperature was necessary to simulate pore 
migration and is discussed in other works25326. 

Densification in crystalline solids occurs by uniform annihilation of vacancies at 
the grain boundaries3',". As vacancies are annihilated, the center of mass of the 
adjoining grain moves toward the grain boundary, thus giving densification. The rate- 
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limiting step in this process is for the vacancies to diffuse along the entire length of the 
grain boundary. In this model a vacancy is defined as a single, isolated pore site that is 
not connected to any other pore sites. The algorithm used for pore annihilation is the 
following. A pore site is chosen. If it happens to be a vacancy (an isolated pore site) on a 
grain boundary, it is annihilated. Annihilation is simulated as follows. A straight line is 
drawn from the isolated pore site through the center of mass of the adjacent grain to the 
outside boundary of that particle. Next, the isolated pore site and the outside grain site 
are exchanged with the grain site assuming the q state of the adjacent grain. This 
algorithm conserves mass globally, moves the center of mass of the adjacent grain 
towards the annihilation site, and annihilates a vacancy. The frequency of the annihilation 
attempts is adjusted to simulate the diffusion of vacancies to the entire grain boundary. 
As the grain boundary length increases, time between annihilations also increases as: 

Equation 3 

where tannj is the time between annihilation attempts, ianni is the time between 
annihilation attempts for the initial grain boundary length Ligd at the beginning of 
sintering, and Lgb  is the current grain boundary length. Adjusting the annihilation 
frequency in this manner simulates uniform annihilation of vacancies along the grain 
boundary. 

Time in the model is measured in units of Monte Carlo step; lMCS corresponds 
to N attempted changes where N is the total number of sites in the system. MC time is 
linearly proportional to real time’2 in material systems that have the characteristics 
simulated by the model. The proportionality constant of a given material can be found by 
comparing simulated microstructural evolution to that of the material. The starting 
configuration for the simulation is three circular particles touching each other as shown in 
figure 1. The grain growth, pore migration and annihilation algorithms are applied as 
described above to simulate sintering. Three separate simulations were run from the 
same starting configuration for 150,000 MCS, a time past the disappearance of the center 
pore. Qualitative microstructural evolution are reported and shrinkage y at time t in the 
simulation is calculated as: 

Equation 4 

where A, is the initial area; AA is the change in area; Np,o is the initial number of pore 
sites (the number of pore sites in the middle of the three particles shown in figure 1); 
Np(r) is the number of pore sites in the middle of the three particles at time t; and Ng is the 
total number of grain sites, which remains constant. In addition to microstructural 
evolution, the shrinkage results of the three simulation runs are averaged and presented in 
the following section. 



Results and Discussion 
The microstructural evolution of this three-particle sintering simulation is shown 

in figure 1.  Qualitatively, these results are expected. Initially the three particles are just 
touching and all three pore edges are comoletelv concave. As sintering orogress. the 

l a  
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Figure 1. Simulation results showing microstructural evolution during sintering of three 
particles. The starting microstructure shown in l a  is of three circular particles touching 
and the last microstructure, le, is after the pore disappears. 

necks between the grains grow and the pore comers start to round. The pore edges 
become increasingly convex as the pore shrinks. The centers of mass of the three 
particles approach each other’s. No grain growth is observed and none is expected as the 
grains are all of the same size and the grain boundaries in between them remain straight 
as they grow. After the pore in the center disappears, densification continues as the 
centers of mass of the three particles continue to approach each other. 

The morphological characteristics observed were expected, but we wanted to 
verify that the model could simulate sintering kinetics as well. Kinetics are verified by 
comparing densification curve of the simulation to that predicted by sintering theory. 
Shrinkage rate of circular particles sintering has been treated analytically by man$-’. 
They all used a similar approach by equating the flux of the material to neck with the 
increase in neck size and solved for the shrinkage as a function of sintering time. They 
reported the time exponent for shrinkage to vary from 0.31 to 0.50 depending on the 
details of their derivation such as the transport mechanism and curvature they assumed 
for the pore edge. Here we compare our simulation results with the predictions of 
Johnson’ who treated both 3D case (two spheres sintering) and 2D case (two infmitely 
long wires sintering). He predicted the shrinkage rate by relating the flux of material into 
the neck to the neck growth for grain boundary diffusion, the same mechanism simulated 
in this work. The assumptions he made were that particles were infinitely long cylinders 
of the same size; the radius of curvature of the particles remained constant everywhere 
(the particles remained cylindrical) except at the neck; the mass transport mechanism is 
grain boundary diffusion; and the grain boundary between the particles remains straight 
as it grows. For the 2D case of infinitely long wires, he obtained the following for 
shrinkage as a function of time 

wherey is shrinkage, B is a constant related to diffusivity, surface energy, atomic 
volume, particle radius and other materials parameters, and t is time. The shrinkage in 
the simulation was calculated using equation 4. The shrinkage was averaged over the 
three simulation runs. While the simulation was run past the disappearance of the center 
pore, the shrinkage is calculated from the starting configuration until the center pore 
disappears. The shrinkage obtained from the simulations is compared to sintering theory 
in figure 2, a plot of shrinkage as a function of time. As one can see there is very good 
agreement at early times in the simulation, but at the later time, the simulation shrinks 
faster than sintering theory would predict. The disagreement in the later time between 
simulation and theory is due to the assumptions that the pore remained concave as the 
simulation progressed. Clearly, the pore shape changes from a concave shape to a 
convex shape as sintering proceeds (see figure l a  to d). This change in shape of the pore 
was reported by Alexander and Balluffi” in their classic paper studying sintering of 
copper wires. 

= B~-1 .32  t 0.33 Equation 5 
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Figure 2. Shrinkage as a function of time measured in the simulation 
shrinkage predicted by sintering theory, equation (5) .  

is compared to the 

Figure 3. Convex shaped pore used for derivation of densification rate during 
later times of simulation. The solid line is the shape of the pore at time tl and the dotted 
outline at a later time tz. 

To test the hypothesis that the change in pore shape leads to the discrepancy in 
shrinkage rate between the simulation and analytical prediction of shrinkage, we 
analytically calculated the shrinkage as a function of time for the convex pore shape. We 
made the assumptions similar to the ones made in by the earlier model. The grains 
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remain circular except for the flattening at grain boundaries (have the same radius of 
curvature everywhere except at the grain boundaries). The pore has the convex shape 
shown in figure 3 with all three segments having the same curvature. The segments meet 
at 120’ angle since the simulation treats the case of isoenergy surfaces. The pore is 
assumed to shrink self-similarly with the grain boundaries growing longer as sintering 
proceeds. 

The shrinkage equation was derived for this geometry by equating the flux of 
material into the pore by grain boundary diffusion to the rate of change in pore area 
following Johnson’s treatment’: 

dA J6=- 
dt 

Equation 6 

where J i s  the flux per unit time, Sis the grain boundary thickness, A is the pore area and 
t is time. The flux is 

D 6  
RkT ” 

J = - -  Equation 7a 

where D is the grain boundary diffusivity, O i s  the molar area, k is Boltzmann’s constant, 
and Tis temperature. Johnson noted that the quasi-steady state condition requires 

V J  = const Equation 7b 
and that chemical potential and stress are related as 

Equation 7c 

The solution to the stress (or chemical potential) equation is of the form 

and two boundary conditions are stress at the center of the neck i s V a ( x  = 0) = 0 ,  and 

stress at the pore surface x, is a(x = x, ) = - 2 where y is the surface energy and R is 

o = a x 2 + b  Equation 7d 

R 
pore radius of curvature. Finally, the force balance on the grain boundary requires rd = ysin(:) Equation 7e 

~- 
J = -  6y& si& / 3) 

kTR2 

. .  

Using all the relationships above and noting that the neck size for low porosity is 
proportional to negative pore radius it can be shown that the flux is 

Equation 8 

‘l’he pore area is also a function of pore radius 
A = +- R2 &) 

Equation 9 

Substituting Equations 8 and 9 into 6 and solving for R with the boundary condition 
R=R, at f = 0, where R ,  is the initial pore radius, one gets 



Equation 10 

. The equation describing shrinkage as a function of 
6yS2D si& / 3) 

kT 
where r = - 
time is 

Equation 11 
AA R : - . , / n  

y(t)  = - ( t )  = 
A0 R: 

41- 
n-3'  

where C = - 

Figure 4 compares the shrinkage equation 11 with the results obtained from simulations. 
There is agreement between the simulation results and the analytically predicted results 
for this geometry. Furthermore, the microstructures shown in figure 1 are labeled on 
figure 4 and correspond well with the concave pore shaped region, the transition region 
and the convex pore-shaped region of figure 4. Therefore, we conclude that the model 
presented in this work simulates solid-state sintering in crystalline systems with grain 
boundary diffusion as the transport mechanism well. 

! 
. . .  

I 
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100 1000 10000 100000 
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~ 

Figure 4. Shrinkage as a function of time measured in the simulation is compared to the 
shrinkage predicted by sintering theory, equation ( 5 )  for the concave pore-shaped region 
and equation (1 1) for the convex pore-shaped region. The times corresponding to the 
microstructures shown in figure 1 are labeled. 
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The model presented here simulates a number of microstructural evolution 
processes that are driven by the reduction of interfacial free energy. While the model is 
capable of simulating grain growth, no grain growth occurs in this simulation as the three 
particles are the same size and there is no curvature to the boundaries between them. 

Sin le pore sites, analogous to vacancies, are formed at all surfaces. As shown 
elsewhere the concentration of vacancies near an interface is inversely proportional to 
its curvature as formalized by the Gibbs-Thompson relation. Thus, more vacancies are 
formed at the internal pore surface than at the outside boundaries of the particles. When 
these vacancies diffuse to the grain boundary, they are annihilated and densification 
occurs. Surface diffusion at the pore surface and the external particle surfaces causes the 
shape of the system to equilibrate constantly, thus leading to minimum energy shapes in 
the system. 

8 

Conclusions 

evolution during sintering in a 2D system of three particles, has been presented. It has 
been shown to accurately predict the microstructural evolution in such a system by 
simulating the expected topological changes and by simulating the kinetics of 
densification. The topological changes are compared to experimental evidence found in 
the sintering literature. The densification kinetics is compared to predictions of sintering 
theory. 
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Chapter 3 

Numerical Simulation of Solid State Sintering 11: Sintering of a Powder 
Compact 

Michael Braginsky and Veena Tikare 

Abstract 

This chapter discusses in detail the development of a numerical model capable of simulating 
microstructural evolution during sintering of complex powder compacts. The model based on 
the kinetic Monte-Carlo (Potts) approach simulates grain growth, vacancy diffusion, and pore 
annihilation at grain boundaries. Several algorithms for modeling of vacancy annihilation are 
tested and the most promising is chosen for further development. Results of simulations for 
perfect close-packed and random starting configurations are presented and discussed. 

Introduction 

The main purpose of this work is to develop a model capable of simulating microstructural 
evolution during sintering of a geometrically complex powder compact comprising hundreds of 
arbitrary-shaped particles. The need for such a model can hardly be overstated. Although great 
progress has been made in the last 50 years in understanding microstructural evolution during 
sintering, current models of sintering '-' still consider highly idealized geometries with limited 
number of circular or spherical particles. While these models have provided much insight into 
the sintering process by predicting shrinkage rates, geometric changes in the particles and other 
information, their ability to predict characteristics of a complex powder compact has remained 
limited. We will present a model that is capable of simulating coarsening and densification in a 
powder compact at all stages of sintering. This capability will allow us to predict density 
distribution and shape changes in a large body. 

There is a great number of works treating complex diffusion and transport mechanisms 
during different stages of sintering '-I2, usually applied to a rather limited number of particles or 
particular geometries. For instance, Ashby 25 assumes sintering of a owder compact consisting 

25- 8 of spherical particles of single size and uses statistical methods of ' to determine the number 
of contact neighbors, sintering pressure, and densification. More recent analytical and numerical 
models of sintering make fewer assumptions and are able to treat the details of shape change, 
shrinkage rate or other characteristic more accurately in a sintering compact. These works lead 
to greater understanding of the sintering process and to better predictive models of sintering. 
However, they do not capture the complexity of a real sintering system. Furthermore, these 
models treat each stage of sintering based on a different set of assumptions, while it would be 
beneficial to have a unified model capable of treating all the stages of sintering based on the 
underlying physics. 

The model used to simulate sintering in this work is based on the kinetic Monte-Carlo (Potts) 
model 15, which was used successfully to model grain growth and pore migration previously 16-18. 

Hassold et a1.20 used a similar kinetic Monte Carlo model to simulate final stage sintering, by 



resizing the pores based on the mean distance between pores. Rather than shrink pores, as 
Hassold et al. 20 did, we simulate the formation, diffusion, and annihilation of vacancies. A 
vacancy annihilation mechanism based on the view developed in the stereological theory of 
sintering l 9  is added to the model in order to simulate densification. This mechanism comprises 
vacancy migration from the pores to grain boundaries and vacancy annihilation at the 
boundaries. The annihilation occurs at a uniform rate along the grain boundary and yields 
densification. Centers of mass of adjacent grains move closer together in the process. The 
methodology was applied to sintering of three particles in chapter 1. In this chapter we extend 
the model to simulate sintering in a complex powder compact consisting of a large number of 
particles of arbitrary shape. All simulation results presented are obtained in 2D. 

Potts Model 

A kinetic Monte Carlo model l 5  was used to simulate 2D microstructural evolution during 
sintering. It can model the following processes: 

1. Grain growth by short range diffusion of atoms from one side of the grain 
boundary to the other; 

2. Long range diffusion of pores by surface diffusion and of vacancies/material by 
grain boundary diffusion; 

3. Vacancy annihilation at grain boundaries'. 

In the model, an ensemble of grain sites and pore sites is allowed to populate a square lattice. 
The grain sites can assume one of Q distinct, degenerate states, where the individual state is 
designated by the symbol q and the total number of states in the system is Q, qgr,,. = [1,2, ... Q]. 

The pore sites can assume only one state, q,,,, = -1. 

Contiguous grain sites of the same state q form a grain and contiguous pore sites form a pore. 
Grain boundaries exist between neighboring grain sites of different states, q ,  and pore-grain 
interfaces exist between neighboring pore and grain sites. The equation of state for these 
simulations is the sum of all the neighbor interaction energies in the system given by 

where N is the total number of sites, 6 ( q , , q i )  is the Kronecker delta with 6(q, = q i ) =  1 and 

6(q, # q j ) =  0, q, is the state of the grain or pore at site i and q j  is the state of the nearest 

neighbor at site j. Thus, the only energy considered in the simulation is the interfacial energy 
and all unlike neighbors contribute one arbitrary unit of energy to the system. As pore sites can 
assume only one state, qp0, = -1 , there are no pore boundaries and all pores sites coalesce. In 

contrast, grain sites can assume many different states making grain boundaries possible. This 

- - -  

i In this approximation we refer to a single pore site as a vacancy, while denoting more 
than one contiguous pore sites as a pore 



yields a two-component, two-phase system with uniform, isotropic interfacial energies between 
grains and between grains and pores. 

. Grain growth is simulated using the method developed in previous works '6 - '8 .  First a grain 
site is chosen at random from the simulation space. Then a new state q is chosen at random from 
the Q possible states in the system. The grain site is temporarily assigned the new state and the 
change in energy is evaluated using (1). Next the standard Metropolis algorithm is used to 
perform the grain growth step based on Boltzmann statistics. A random number, R, between 0 
and 1 is generated. The transition probability, P, is calculated using 

P = /  1 for AE so 

where kB is the Boltzmann constant and T is temperature. If the R <P, then the grain growth step 
is accepted, if not, the original state is restored. The simulation temperature used for grain 
growth was kBT = 0, which has been shown to simulate grain growth well I"''. 

Pore migration is simulated using conserved dynamics, so that the total number of pore sites 
and grain sites is the same after a pore migration step. A pore site is chosen and next a 
neighboring grain site is chosen. The two sites are temporarily exchanged with the grain site 
assuming a new state q where q results in the minimum energy. This minimum-energy, pore- 
grain exchange simulates pore migration by surface diffusion 21. The change in energy for this 
exchange is calculated using (1) and again the standard Metropolis algorithm is used to perform 
the pore migration step using (2) to determine the transition probability. The simulation 
temperature used for the pore migration step was kBT = 0.7. This higher temperature was 
necessary to simulate pore migration and is discussed in another work 21. Time in the Potts 
model is measured in units of Monte Carlo steps (MCS); lMCS corresponds to N attempted 
changes where N is the total number of sites in the system. 

Vacancy, for the purposes of this work, is defined as a single pore site surrounded by grain 
sites. Vacancy annihilation was simulated in the previous work, sintering of three particles, by 
exchanging the vacancy with a grain site. The grain site for this annihilation event was selected 
by drawing a straight line from the isolated pore site through the center of mass of the adjacent 
grain to the outside boundary of that particle. This algorithm conserves mass globally, moves 
the center of mass of the adjacent grain towards the annihilation site, and annihilates a vacancy. 
Extending this algorithm to a large system with many particles is not trivial as very few grains 
have an external surface. The development of the annihilation algorithm will be presented in the 
following section. 



Model development for microstructural evolution with densification. 

Our model incorporates the concept of densification developed in the stereological theory of 
sintering 19. In this approach, the densification mechanism comprises vacancy migration from 
pores to grain boundaries and vacancy annihilation at the grain boundaries. DeHoff lg  visualized 
this process as vacancies being painted on the grain boundary, with an entire monolayer of 
vacancies annihilated, so that the centers of mass of adjacent grains move towards that grain 
boundary. The rate of the process is limited by the time needed for vacancies to diffuse and 
cover the entire grain boundary. This process is simulated as follows. A pore site is chosen and, 
if it happens to be an isolated pore site - a vacancy" - in contact with a grain boundary, it is 
annihilated. We examined several different algorithms for simulating annihilation. All the 
algorithms were required to conserve mass globally and to move the centers of mass of the grains 
adjacent to the site being annihilated closer together. The frequency of annihilation attempts is 
adjusted inversely proportionally to the average length of grain boundaries, as given by: 

to simulate uniform annihilation along grain boundaries. 

First, the three algorithms investigated for vacancy annihilation are described. Next, the 
densification curves and other microstructural details resulting from these three algorithms are 
compared. . 

The jump algorithm 
In this algorithm, pore annihilation is simulated by exchanging a vacancy (an isolated 

ii In the following we refer to contiguous collections of pore sites as pores, while the 
term "vacancy" is used to denote single pore sites. 
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Center of Mass 

Figure 1. Schematic of the jump algorithm. 
Black color denotes pores and grain boundaries; white denotes grains 

pore site) at a grain boundary with a grain site at the surface. The grain site for the exchange is 
chosen at the intersection of a line, drawn from the isolated pore site through the center of mass 
of the adjacent grain, and the outside boundary of the sintering compact. After the exchange the 
grain site assumes the q state of the adjacent grain. With "jumps" to the outer boundaries of the 
compact being simulated this routine to a great extent homogenizes local deformation. The 
schematic of this algorithm is shown in figure 1. 

For this algorithm to work there has to be a surface. Thus, periodic boundary conditions 
cannot be used. 

The shift algorithm 
Like the jump algorithm we start by drawing a line from the isolated pore site through the 

center of mass of the adjacent grain to the outside boundary of the sintering compact. But in this 
approach the adjacent grain site on this line fills the isolated pore site. The next site on the line, 
in turn, replaces the moved grain site, and so on. All the sites on the line (grain and pore sites 
equally) are shifted towards the site of the annihilated pore. The annihilation step, thus, requires 
more computational steps to accomplish than in the simpler jump approach 

The shift-with-minimization algorithm 
This algorithm is identical to the shift algorithm with one important addition. Each shifted 

grain site assumes the q state that minimizes the number of unlike neighbors, while pore sites 
remain pores after shifting. The energy of the system, given by the neighbor interaction 
energies, is reduced by the minimization of the number unlike neighbors and, therefore, is 



smaller after a shift-with-minimization event than after a shift event. This algorithm introduces 
less distortion into the system. 

Comparison of the three algorithms 
First we performed simulations with perfect close-packed circular particles as the starting 

configuration. Microstructures and densification curves showing the dependence of the density 
of a compact on time were very similar for all three algorithms. Because microstructures 
resulting from all three algorithms are so similar, only the microstructures produced by the jump 
algorithm at different times are shown in figure 2. Time, as is customary in such simulations, is 
measured in Monte-Carlo steps. 

Microstructures shown in figure 2 are qualitatively quite similar to the classic experimental 
results of Alexander and Baluffi 30 on sintering of copper wires. As time progresses pores 
become smaller due to the vacancies diffusion along grain boundaries and their subsequent 
annihilation, centers of mass of adjacent grains come closer together. Internal grains stay the 
same size since grain boundaries between them have no curvature. They attain the hexagonal 
equilibrium shape as is expected. External grains, which cannot become hexagonal, tend to 
decrease in size to reduce the free surface area and, hence, the energy of the system. 

The densification curves are shown in figure 3. Like the microstructures, all three curves are 
very similar. The shift algorithm results in a slightly higher densification rate, while the shift- 
with-minimization leads to a slower densification. The jump algorithm results in the lowest 
densification rate. The difference in the densities between the three algorithms at all times is less 
than one percent of initial density. 

One potential artifact of the model is a possibility of artificial size differences between 
exterior and interior grains. In order to check whether this occurs, we calculate average sizes of 
exterior and interior grains. These separate statistics shown in figure 4 are needed to understand 
whether replacing pores with grain sites from the boundary alters the grain size statistics in any 
significant way. In the simulations the largest differences between these sizes were found for the 
jump algorithm. These differences are rather small (less than 5%) relative to the average grain 
size during the simulation. In addition, due to the tendency of outer grains to decrease in size to 
minimize the energy of the system discussed above, only a part of this difference may be 
attributed to the possible artifact of the model. 



Figure 2. Microstructures obtained using the jump algorithm from a perfect close-packed sta 
configuration: (a) after lo4 MCS, (b) after 3x10~ MCS, and (c) after lo5 MCS 

Thus, all three proposed algorithms perform well for a perfect close-packed initial 
configuration and lead to reasonable results. 
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Figure 3. Densification curves for diierent routines starting from the packed initial configuration 

In order to test the methodology further, we performed calculations with randomly packed 
equi-axed particles of different sizes and with higher initial porosities. As was expected, these 
simulations revealed much larger discrepancies between the results of the three algorithms, both 
in terms of densification rates and microstructures, than in the case of the perfect close-packed 
initial configuration. 

As in the previous simulations vacancies diffuse along the grain boundaries and pores shrink 
due to annihilations, but, unlike the case of a close-packed initial configuration of same size 
particles that resulted in straight grain boundaries, systems with a random starting configuration 
exhibit pore and grain coarsening driven by the curvature of grain boundaries. These 
developments are present in the simulations with all three algorithms, but are somewhat more 
pronounced, especially the coarsening of pores, in the jump algorithm because, as discussed 
below, both shift algorithms lead to faster densification. In all three cases grain growth 
accelerates as pores are being annihilated, which suggests, as expected, that grain coarsening is 
pinned by pores. 

The densification curves and microstructures at different times are shown in figures 5 and 6, 
respectively. Unlike the previous case of close-packed uniform particles, the densification rate 
and microstructural evolution resulting from the three algorithms are very different. The 
microstructures for the shift algorithm are shown for 500,800, and 1000 Monte-Carlo steps 
(MCS), with the evidence of densification clear already after 800 MCS and full densification 
above 2000 MCS, while the first microstructure shown for the jump algorithm at 10000 MCS 
shows very little densification. Thus, densification in the shift algorithm is orders of magnitude 



faster than densification in the jump algorithm, with shift-with-minimization algorithm falling in 
between. 
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Figure 4. Grain and pore-size statistics for densification from the perfect close-packed starting configuration 
in the jump algorithm. Average sues are shown as function of time (in MCS). 

Another noticeable difference in microstructures shown in figure 6 is that pores in the 
microstructures produced by the shift algorithm are rather small during the whole simulation; 
they are annihilated faster than they coarsen. Full densification in both shift and shift-with- 
minimization algorithms is achieved at significantly smaller grain sizes than in the jump 
algorithm. 

The reason for much higher densification rates in the shift algorithm is that, as evidenced by 
the microstructures shown, shifting artificially introduces lots of vacancies into the system at or 
close to grain boundaries. In addition, the energy of the system is increased significantly 
because shifted grain and pore sites are more likely to have a higher number of unlike neighbors 
after the shift. It is analogous to introducing artificial noise into the system by producing too 
many vacancies. Thus, annihilation events are much more probable, which leads to rapid 
densification. The situation is analogous to noise-induced transition *', when the behavior of a 
physical system far from equilibrium is dramatically changed because of noise. The main 
difference, though, is that in the shift algorithm "noise" is introduced into the model system 
artificially, in the computation only, with no apparent analog in the physical realm. The shift- 
with-minimization algorithm introduces less artificial noise as seen in the microstructures in 
figure 6 and densification curves in figure 5. Additional energy minimization during shifting 
makes the resulting microstructures less erratic, with the artificial energy increase due to shifting 



significantly smaller than produced by the shift algorithm. However, pores along the line of shift 
are moved and some become vacancies in the shift-with-minimization algorithm as well leading 

. to higher densification rates than in the jump algorithm. 

Unlike both shift algorithms, annihilation in the jump algorithm almost always decreases the 
energy of the system. The number of unlike neighbors after a substitution of a grain site for a 
vacancy in this algorithm can increase at most by 2 or decrease by as many as 14 depending on 
the configuration with both extreme values unlikely. This results in much more reasonable 
microstructures than in both shift algorithms. 

Thus, based on the analysis of the microstructures and densification curves, we can state 
unequivocally that the jump algorithm leads to more reasonable results, while both shift 
algorithms produce physically unrealistic microstructures due to "noise" artificially introduced 
by the algorithms. In addition, both shift algorithms, especially, the shift-with-minimization, 
require more computational time. Therefore, the jump algorithm is chosen for the subsequent 
development. 

As stated above, one of our concerns was the possibility that the proposed algorithms alter 
grain size statistics. figure 7 shows grain and pore size statistics for the simulation from a 
random initial configuration with the jump algorithm. Here, unlike the case of perfect packing, 
the difference in grain size of exterior and interior grains is more pronounced, especially, if we 
consider relative sizes. Nevertheless, grain growth of all grains including exterior grains, as 
evidenced by figure 7, is much higher than the rate of exterior grain shrinkage due to 
annihilation. 

time (MCS) 

. - - - - - j u m p  - shift - - - - shift-with-minimization I 

Figure 5. Densification curves for different algorithms starting from a random initial configuration 
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(A) Jump algorithm 

after 104 MCS after 3x10~ MCS after lo5 MCS 

(B) Shift algorithm 

after 500 MCS after 800 MCS after lo3 MCS 

(C) Shift-with-minimization algorithm 

after 500 MCS after 2x1 o3 MCS after 2x1 o4 MCS 

Figure 6. Microstructures obtained using the different atgorithms from a randomly packed non-uniform 
powder 
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Figure 7. Grain and pore size statistics for densification from random configuration in the jump algorithm. 
Average sizes are shown as function of time (in MCS). 

In addition, the number of exterior grains is much smaller than the number of interior grains in 
these simulations. Therefore, the overall grain statistics is affected only insignificantly. Note that 
the shift and the shift-with-minimization algorithms alter grain size statistics very substantially. 

Discussion and conclusions 

Similar to other areas of Materials Science, modeling of sintering comprises two distinct 
approaches: microstructural mesoscopic models and macroscopic continuum models. Despite the 
significant progress achieved in understanding microstructural processes of sintering, the 
connection between the micro- and macro- structural models is still approximated by 
phenomenological constitutive relations based on highly idealized geometries. The latter 
statement is true not just for the current state of sintering modeling, but also for the state of 
simulation of a wide range of different phenomena for which macrostructural evolution is 
determined, at least in part, by microstructural rearrangements. The problem is that macroscopic 
behavior, while dependent on the underlying local interaction mechanisms, is controlled by the 
whole set of local interactions, i.e., by collective microstructural phenomena. 

Until recently, simulation of microstructural evolution of large systems was not feasible due 
to the computer power limitations. It is becoming increasingly possible to simulate 
microstructural behavior of large systems, and this development is paving the way for 



embedding microstructural evolution into macroscopic models. For instance, in dislocation- 
based plasticity modeling only in the late 90s did it  become viable to directly calculate 

31 - 3 3  interactions of large numbers of dislocations , which in turn allowed plasticity models to 
move beyond continuum phenomenolo ical theories that rely on field quantities to approximate f 3 4 0  collective microstructural phenomena . 

In the modeling of sintering the need for the incorporation of mesoscopic simulations into 
macroscopic models is even greater because microstructural evolution provides the driving force 
for macroscopic deformation in sintering. Therefore, a mesoscopic model of sintering capable of 
simulating large powder compacts could be a step to more realistic macroscopic models. We 
discuss these aspects of our work elsewhere 41,  but it is important to state the requirements a 
model should satisfy for this development to be possible. 

First of all, the model should not have any a priori geometric assumptions. Second, the model 
should not rely on semi-arbitrary division of the sintering process into stages, relying on more 
local, basic physical processes. The problem with the stages - and most current sintering models 
have 2 or 3 stages - is that there are no exact points when one stage ends and the next begins 
because the distinction between the stages is based on overall or average characteristics of the 
compact. Consider, for instance, Ashby's model 25 that distinguishes two stages of sintering 
(microstructures with open and closed porosity) with different densification laws. Density is used 
as the criterion for considering the compact in one or the other stage in this model, with the 
second stage starting at 0.92 of the theoretical density of the compact. The number is based on 
consideration of a powder compact with spherical particles and, thus, incorporates geometric 
assumptions. Other models use similar approaches to criteria dividing the process of sintering 
into stages. And, finally, the model, as mentioned above, should be scalable, i.e., it should be 
able to simulate large powder compacts. 

The simulation technique we present satisfies all three requirements. The model does not 
need any geometric assumptions because the microstructural development is simulated in it 
based on a set of simple local rules and overall thermodynamic laws. The state of each pixel 
depends only on the state of its neighboring pixels, not on the state of the whole system at each 
point in time. Thus, the system can exhibit the open and closed porosity stages as seen in 
microstructures in figure 6 for the second example in 3.1, but the model does not require any a 
priori information on those stages or any change in the simulation rules when the porosity 
becomes closed. The Potts model, which is the basis of our sintering model, has been shown to 
be scalable Is-18. The addition of the annihilation mechanism, understandably, slows the 
calculation, but not very significantly and does not require more memory usage. Therefore, the 
third requirement is satisfied also. 

Consider now the three different algorithms of incorporating annihilation into the kinetic 
Monte-Carlo (Potts) model discussed in 3. While there were rather significant differences when 
these routines were applied in numerical experiments with random initial configurations, the 
differences in the numerical results for packed 2D configurations were much less prominent as 
shown by the results discussed in 3.1. The shift algorithms that tend to lead to unphysical results 
for random starting configurations are, in addition, significantly more computationally complex 
requiring more computer time. The small artifact that the jump algorithm introduces - namely, 



the difference in average grain size between the exterior and interior grains due to the 
annihilation procedure - is not significant because the rate of grain growth is much higher than 
the rate of artificial shrinkage of the exterior grains. In addition, being a boundary effect, this 
artifact becomes less and less important with the increase of the simulation size. Therefore, we 
chose the jump algorithm as the basis for further development. 

There is another important characteristic of the model that we need to address: by moving 
porosity to the boundary regions, the procedure homogenizes the deformation of the simulation 
area. This feature might be even conducive for the connection to macroscopic continuum 
models, which require some average, or homogenized, information from the microstructures, but 
because of it the algorithm does not allow for the defect growth that occurs in many materials 
during sintering. The algorithm does allow for modifications, like jumps to defects in addition to 
the jumps to the boundary of the compact, which can simulate the defect growth. This issue 
together with the generalization to 3D,that is usually straightforward for kinetic Monte-Carlo 
algorithms, will be the focus of the further development of the model. 
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Chapter 4 

Connecting Microstructural Evolution and Macroscopic Constitutive Models 

Michael Braginsky 

The continuum theory of sintering has been developed to describe macroscopic shrinkage 
and deformation in a sintering body. This theory condenses all the microstructural changes 
during sintering into a few continuum thermodynamic and kinetic quantities that are used to 
describe the shrinkage during sintering. The main constitutive relationship of the isotropic 
continuum theory of sinteringl is: 

where p and ya re  the normalized shear and bulk viscosity moduli. They are functions of 
microstructural parameters such as porosity B ,  grain shape and size, interparticle neck geometry, 
etc. 4 is the Kronecker delta; e is the first invariant of the strain rate tensor & . Physically, e 
represents the volume change rate of a porous body or shrinkage rate. The effective equivalent 
strain rate W is a function of the instantaneous porosity and the invariants of the strain rate 
tensor. The effective equivalent stress o(W) determines the constitutive behavior of a porous 
material. pL is the effective Laplace stress (macroscopic sintering pressure), which depends on 
the local sintering pressure P", (sintering pressure in the immediate microstructural 
environment), porosity and various pore structure parameters such as relative interparticle neck 
radius. B is the relative porosity calculated as the ratio of pore volume to volume of the porous 
body. 

A more general, anisotropic, nonlinear constitutive relationship can be written as 

where c, (&i) is some non-linear tensor function (functional) depending on the strain rate. In the 

linear anisotropic case reduces to 
oij = A,kI&kl + 4; 

Eq. (3) 

with Aidenoting the tensor of viscous properties. The effective Laplace stress e,! in both (2) and 

(3) is not a scalar representing a hydrostatic tensor as in (I), but a tensor quantity. 

We would like to be able to determine parameters of the constitutive models - especially, 
the sintering stress - from microstructural simulations. Below we discuss ways to achieve this 
goal. Since there are, as discussed in the following, very significant differences between the 
isotropic and anisotropic cases, these two cases are considered separately starting with the 
isotropic case, which is simpler. 

Isotropic sintering 
In the framework of the continuum theory of sintering, the effective Laplace pressure 

(sintering stress) pL is defined based on thermodynamics as follows'. 



Considering the Helmholz free energy of the form 
F = F ( T , ~ )  

where T denotes temperature, and .fl is the specific volume, and the second law of 
thermodynamics in the form 

o,&, - p ~  - p ~ f  L O  Eq. (5) 

(with no heat flux), one obtains by substituting into (5) the time derivative of (4): 

(o, -%a,)&, -p(g+s)f LO, 

which leads to the identification of the Laplace pressure as 

Relationship (7) can be used to directly calculate the effective sintering stress from 
microstructural simulations. The part of the free energy that corresponds to mechanical 
deformation is identified as the energy associated with the free surface area. At each step of the 
microstructure evolution the shrinking volume and the free surface of the grain-pore arrangement 
are calculated. Then, numerical differentiation is performed to determine the effective sintering 
stress. In order to stabilize the numerical differentiation, we use a regularization procedure. 

Having found the effective sintering stress, we can use simulation data together with (1) 
to determine the normalized effective bulk viscosity modulus, yr . Indeed, for free sintering that 
is studied in our microstructural simulations, (1) is reduced to 

which allows the determination of yr from the known effective sintering stressiii 0 
Notice, that microstructural simulations of free sintering leave the normalized shear 

viscosity modulus, y, , indeterminate because deformation during free sintering in the isotropic 
case is hydrostatic, which is manifested by the fact that y, does not appear in (8). The shear 
viscosity modulus could be determined from sinter forging, i.e., the simulations incorporating 
applied stresses, not just free sintering. 

Anisotropic sintering 
In the anisotropic case the total macroscopic deformation of a sample is not characterized 

by the changes in volume only. In the case of simple stretching along principal axes, the free 
energy has to be a function of temperature and the macroscopic (uniform) deformation tensor. 

F = F(T,E) Eq. (9)  

.- 
L l ' l l 1  The effective equivalent strain rate W, the effective equivalent stress b ( W ) ,  and the 

first invariant of the strain rate tensor, e , are, of course, known through the simulation. 
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The free energy can be written as function of invariants of the strain tensor, e.g., its principal 
values. 

While a function of invariants of a tensor is an isotropic function of that tensor, i.e., it is 
not dependent on the rotations of that tensor, the use of form (9) for the description of anisotropic 
sintering is justified. Indeed, when we are talking of anisotropic sintering, we mean that the 
sintering stress is no longer hydrostatic, as in the isotropic case. All we state assuming the form 
(9) is that the sintering stress defined as a derivative of such an isotropic function with respect to 
the macroscopic strain is affine to that strain, i.e., the connection between the sintering stress 
and the macroscopic sintering strain is isotropic. The shrinkage due to the non-hydrostatic 
sintering stress will not be isotropic. 

Constructing a more complicated free energy function proves problematic. To do that, we 
must include other tensors or vectors, thus increasing the number of invariants the function can 
depend upon, because free energy has to be represented by isotropic functionsiv. For instance, a 
free energy function for a transversely isotropic material will be an isotropic function of the form 
F=F(E, nn), where E stands for the macroscopic strain tensor, while n is the symmetry direction. 
The invariants that F can depend upon include in addition to the invariants of E also nn:E and 
tr(E*E*nn) 2. This implies that symmetry information has to come from somewhere, i.e., we 
need some a priori information about viscous properties, which is not available. If we were to 
assume that the symmetry direction n corresponds to a principal vector of the strain tensor 
(which is exactly the case in our computer experiments), the formulation would reduce right 
away to (g), since in this case the more complicated free energy function reduces to an isotropic 
function of the principal values of the macroscopic strain and, hence, of any 3 invariants of the 
macroscopic strain we would like to choose. 

Following the same procedure (4) - (7) we get for the 2-nd Law of thermodynamics: 

and obtain from (10) 

which rigorously identifies the anisotropic 'Laplace pressure' as: 

Notice that if the free energy depends on volume only, (9) may be written as 

F = F ( T , I , ) ,  Eq. (13) 

iv otherwise it won't be a scalar 



wherev I, = E,, is the first invariant of the macroscopic strain tensor. With the substitution of (13), 
( 1 1) becomes 

which, obviously, recovers (7) since from 

we find that 

where Vo is the initial (undeformed) volume; this means that 

dV 1 
because from (15) -=V;  Sincez9=- 

dl, P 

To study the connection between the anisotropic formulation and the classic formulation of 
(1) - (4), we can further specify the free energy function (9) as. 

F=F(T,I , , J , , J , ) ,  Eq. (18) 

where J, and J, are the invariants of the deviatoric part of the macroscopic strain tensor. These 
three invariants determine the deformation tensor completely. The choice of the second and third 
invariants of the deviatoric part of the tensor and not of the strain tensor itself is made 
specifically to avoid additional terms in the hydrostatic part of the sintering stress, since 
derivatives with respect to a deviatoric part of a tensor are independent of the hydrostatic part of 

the same tensor and vice versavi. In the principal axes of strain {E,, E,, E,) these invariants are: 

coefficients of 113 and 119 are omitted in J2 and J3, respectively, as irrelevant. 

summation in a repeating index is implied 
vi what happens if we consider the free energy as a function of the invariants of the strain 

tensor itself is shown in the Appendix 2. 



Substitution of (18) into (12) results in the following principal values of the sintering stress 
tensor {P:, P:, P:] : 

- - 

Here we used the fact the first invariant of the deviatoric part is zero. Derivatives of J, with 
respect to principal strains are given in the Appendix 1 (equation (3 1)); they are not shown in 
(20) because the expressions are too long. 

It is shown in the Appendix 1 that the first invariant of the sintering stress tensor: 

which coincides with the formula for the isotropic case. In the Appendix 2 it is shown that if the 
free energy is considered as a function of the invariants of the strain tensor itself, not in the form 
of (9), the formula for the first invariant of the sintering stress is more complicated. 

As was shown above, the thermodynamic approach works nicely in the isotropic case 
allowing to determine both the sintering stress (7) and the normalized effective bulk viscosity 
modulus (8). Unfortunately, we were not able to generalize this approach to the anisotropic case. 

Consider the determination of the sintering stress from (12), or, in principal components, 
from (20). Unlike the expression for the isotropic case which involved only the derivative of the 
free energy with respect to the first invariant of the strain tensor (7). Consider, for instance, the 
expression for the PxL : 

- - 

In the simulation we do know the time dependencies of F ,  E,, E , ,  E, ,  I , ,  J,, J3 , and any other 

geometric characteristic we would like to calculate. But the problem is that they do not vary 
independently. The derivatives that we can calculate are not partial, but full time derivatives. 
And we have just one equation to determine the three unknown partial derivatives: 

dF aF dl, aF dl, aF dJ, - - +--+-- 
dt dl, dt aJ, dt aJ, dt 



There are not enough equations to determine all three partial derivatives and, thus, the 
sintering stress. The only reason this approach works in the isotropic case is that there we need 

. just one derivative (7), which relates nicely to the full time derivative. In the anisotropic case this 
can work with some additional assumptions on the relationship of different components of 
sintering stress. Such assumptions, though, are as unjustifiable as they are undesirable. 

A more promising approach, that seems to be workingvii is to abandon the free energy 
connection to the sintering stress altogether, and to find the viscous moduli - only the 
components relevant for the free sintering - from the dissipative potential. 

Consider an anisotropic viscous model (3)"'j 
0.. '1 - P' 'I = %k[&k[, 

that for free sintering reduces to 
-P' '1 = hi$, 

The energy dissipation rate that is determined as the contraction of stress with the strain rate is 
I. = P L&.. = -A,,kl$$, 

'I 'I Eq. (26) 

Integrating (26), obtain 

If the viscous moduli are constant on some interval (27) is reduced to 

which can be used for approximating the real non-linear dependence of the viscous moduli on 
microstructural parameters by piecewise constant functions. Assuming that we can have enough 
points inside the interval [ tor t , ]  that we can form as many equations as needed to calculate all the 

required components of the moduli tensorix, we can then determine the sintering stress from (25). 

Consider the implementation of this methodology in 2D. 

"" We are working on the verification of this methodology, but this work has not been 
completed yet '"' Here Aqk, can be viewed as a function of time, strain, etc; therefore, the model is non- 
linear. 

It is beneficial for the stability of the method to have the systems with more 
equations than there are unknowns and to use the least-squares method to determine the 
unknowns. 



The strain tensor has only two principal components E,, and E,, . Since all the other 

components of strain in our simulation are zero, the only components of the viscous moduli 
tensor of interest are A,,,, , A,,,,, and A,,, .' 

The calculation would proceed as follows: 

1) Assign two time lengths: 6 t  , the length of the time segment, and dt , the 
subsegment. It is assumed that we can consider the viscous moduli tensor constant 
on any segment of the length 6 t .  

2) Start at to . Form equations based on (28) as follows: 

where ti = to + i -d t ;  for all i E 0, Znt - [ (::)j; 
It is obvious that, at the very least, 3 equations are needed, but an overdetermined 
system would be much more stable. 

It is important to check whether Mi is, indeed, negative. Microstructural 

simulation allows energy to increase at times, while this cannot happen in the 
macroscopic model. Thus, leaving non-negative Mi will lead to non-physical 
results, such as negative viscous coefficients. 
Negative viscous coefficients appear sometimes even when all non-negative 
AFi are left out. This seems to indicate, as in the case of isotropic sintering 

considered under this framework, that All,, is vanishing. In such a case we set 

A,,,, = Oand form the system (29) with this assumption. The coefficients 

A,, , ,and 4,,, determined from this new system were in all cases positive. 

3) Solve the system formed by (29) using singular value decomposition. 
4) Calculate the sintering stress using (25) based on this solution 
5) Set to = to + dt and go back to step 2 ". 

Thus, the procedure allows for changes in viscous properties with time under the assumption 
that this change is much slower than the time scale St  . 

Appendix 1. Derivation of equation (21) 

Z i & l  = A , 1 2 2  
e procedure, of course, has to be organized effectively as to not calculate the same 

integrals several times. 



JF 
The coefficient of -is zero because it is the first invariant of the deviatoric part of the 

a J 2  

aF 
strain tensor. It is a little bit more involved to show that the coefficient of -is also zero. 

a J 3  

Consider 

because ( 2 ~ ~  -P , -E , )+ (~E~  - E ,  -E , )+(~E,  -E ,  -E,)=o 

In the same manner we find that 

2 2 2 
(2$ - E ,  - q ) + (2&,, - &, - &, ) + (2&, - - &, ) ( 2 ~ ~  - &, - &, ) = (2&, - &, - E,  ) Eq. (34) 



Which, after substitution into (32) gives: 

Thus from (30) 

The last equality of (36) has been established earlier in equations (14) - (17). 

Appendix 2. Free energy as a function of the invariants of the strain tensor. 

Consider now what happens if the free energy is considered a function of the invariants of the 
macroscopic tensor itself. Let 

F = F (T,I,, J,, 3,)  =Y(T, I , , I~ , I , ) ,  Eq. (37) 

where I,, I, are the second and third invariants of the macroscopic strain, respectively. In the 
principal strains they are: 

Substitution of (37) and (38) into (12) produces: 

The first invariant of the stress tensor is now 



Thus, if the free energy is written not in the form (1 8), the hydrostatic part of the sintering 
pressure is not given just by the volume derivative of the free energy. This result was not 
unexpected, since while the hydrostatic and the deviatoric parts of a tensor are orthogonal (in the 
sense that their multiplication in both indices is zero), there are no such conditions for a 
hydrostatic part with any other parts of the same tensor. 
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Chapter 5 
Three-Dimensional Simulation of Sintering Using a Continuum Modeling 

Approach 

J. G. Argiiello, V. Tikare, T. J. Garino, M.V.Braginsky 

Abstract 

Skorohod and Olevsky can be combined with results from mesostructure evolution 
simulations to model shrinkage and deformation of ceramics. The continuum portion is 
based on a finite element formulation that allows 3D components to be modeled using 
SNL‘s nonlinear large-deformation finite element code, JAS3D. This tool provides a 
capability to model sintering of complex three-dimensional components. The verification 
and performance of the implemented sintering constitutive model will be presented and 
discussed, as will the validation of the model using experimental results from various 
laboratory experiments performed by Garino. 

The continuum theory of sintering embodied in the constitutive description of 

1.0 Introduction 

National Laboratories (SNL) uses in various components such as PZT voltage bars and 
current stacks, multi-layer ceramic MET’S, alumina/ molybdenum & alumina cermets, 
and ZnO varistors, are manufactured by sintering. Sintering is a critical, and possibly the 
most important, processing step during manufacturing of ceramics. The microstructural 
evolution, the macroscopic shrinkage, and shape distortions during sintering will control 
the engineering performance of the resulting ceramic component. 

All ceramics and powder metals, including the ceramics components that Sandia 

This paper describes the implementation, verification, and validation of a linear- 
viscous continuum model for sintering into SNL’s Engineering Sciences Center nonlinear 
large-deformation finite element codes, specifically JAS3D. While the implemented 
model is a frst order model in the sense that it handles only the linear-viscous case, it can 
be used as a basis for future work that might incorporate general nonlinear-viscous 
behavior, as well as one that can integrate the results of microstructural evolution of 
thousands of particles during sintering (Tikare & Braginsky, 2002) into the continuum 
description to predict the overall shrinkage and shape distortions in a sintering 
component. This phenomenological constitutive model will be referred to as the 
Skorohod-Olevsky Viscous Sintering (SOVS) constitutive model. 

1.1 Skorohod-Olevsky Viscous Sintering Constitutive Relationship 

of continuum mechanics and is based on the theories of plastic and nonlinear-viscous 
deformation of porous bodies. An instance of this approach is embodied in a 
mathematical constitutive description developed by V. V. Skorohod (1972) and further 
advanced by E. A. Olevsky (1998). The result is a phenomenological constitutive model 
whereby a porous medium is considered as a two-phase material that includes a porous 
body skeleton phase and a void phase. The skeleton is assumed to be made-up of 

An approach for macroscopically modeling the sintering process involves the use 
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individual particles having a general nonlinear-viscous incompressible isotropic behavior, 
and the voids are isotropically distributed. As a consequence, the overall response is 
isotropic. 

The constitutive model described herein follows the formulation of the continuum 
theory of sintering of porous viscous materials as presented by Olevsky (1998). In the 
general case, the Skorohod-Olevsky viscous sintering (SOVS) constitutive relationship 
for a non-linear porous material can be written as: 

Eq. 1 

where (ro is the stress tensor; k,, is the strain rate tensor; 2; is the deviatoric strain rate 

tensor; q = (1 - 0)’ = p 2  ; and yl = 2(1- q 3 / ( 3 8 )  = 2p3/{3(1 - p)} . In the foregoing, 0 
is the porosity of the material defined such that B = 1 - p , where p is the relative 
density and p = pt / p r  , with p, being the density at any time t and pr being the 
theoretical intact density of the material. PL is the Laplace pressure or the sintering 
stress. Furthermore, a ( W )  is the “equivalent” stress and W is the “equivalent” strain. 

1.2 The Linear Viscous Case 
As a first step in developing a new capability at SNL for continuum modeling of 

sintering, it was decided that a linear-viscous approach would encompass much of the 
phenomenology seen in the materials of immediate interest for Sandia applications. The 
SOVS constitutive relationship for the linear-viscous porous case; i.e., o(W) = 2%w1 
can be written as, oii = (ZqoW/W)(p&;l + y & k k s i j )  + PL8g or, 

oij =2vOp&j + 2?70v&f&6ij +‘PL6,I. Eq. 2 

We can write the inverse relationship for this expression by recognizing that the 
stress consists of a deviatoric and a volumetric part. The inverse expression of Equation 
2, with strain rate now a function of stress for the linear viscous case (adding a 
superscript, “in.”, to indicate that this is the inelastic, i.e. viscous sintering, part of the 
total strain rate) can be written as: 

Eq. 3 

Equation 3 can be re-written in the more common form by recognizing that (rm = a k k / 3  ; 

os = PL; G = qop; and 
- 

= 2 q 0 ~ s o  that: 

Eq. 4 

with 8 being the effective shear viscosity and being the effective bulk viscosity. 
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The elastic part of the material response is assumed to be isotropic and 
chacterized by Hooke's Law as: 

Eq. 5 

where CqW is the elastic stiffness matrix and $ is the elastic strain rate. The total strain 
in the sintering body is given by: 

Differentiating Equation 6 with respect to time and combining with Equation 5 gives the 
overall constitutive behavior as: 

Eq. 7 . tot. &ij = c i jk l  (&kl - &:') 
where &: is the inelastic, or sintering, portion of the strain rate given by Equation 3. 
The evolution of the relative density, p , is governed by mass conservation: 

6/(1-0)=& o r - p / p = & g .  Eq. 8 

1.3 Integration of the Constitutive Model 

integrate the system of coupled first order differential equations 3-8. For a given 
increment in time, A t ,  the increment in inelastic strain and density are given by (for 
clarity, we temporarily drop the indicia1 notation on the strainshtrain-rates, etc., and 
instead use a direct bolded notation, recognizing that the following apply for all of the 
components): 

A semi-implicit method described by McHugh and Riedel(l997) was used to 

= (1 - 1 ) i F A t  + fliE&At 
Eq. 9 

where the new subscripts denote the various quantities at times t and t + A t .  The value 
of p = 0 corresponds to a fully explicit scheme, whereas ,f? = 1 corresponds to a fully 
implicit scheme. The derivatives at time t are expanded using Taylor series to give: 

AP = (1 - B)PtAt + PPt+A& 

ai  in. akin. 
&t+& = E t  in . +- AU + - Ap + - 'E'"' AT + O(h2)  . in. 

Eq. 1b 
aa aP aT 

Pt+b =fit +-AU+-Ap+-AT+O(h  aP ai, ai, 2 ) 
aU aP aT 

and Equation 5 can be written in incremental form as: 
AU = C(A&'O'' - - - dq. 11 

Manipulation of Equations 9-1 1 resulted in a system of equations (7x7), with the 
six increments of stress and the increment of relative density as the unknowns. The 
system of equations was solved symbolically, using Mathematica, for those increments of 
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stress and the increment of relative density. The increments computed with Mathematica 
were then programmed directly into and used within the JAS3D constitutive model 
routine to advance the solution in time. In JAS3D, the stresses from the last converged 
solution are known. Estimates for the total strain rates are made for the next solution step 
based on the iterative solution algorithm. These strain rates are assumed to be constant 
over the solution step of interest. The stresses over the step are then computed in the 
constitutive routine using the equations presented above. 

During the implementation of the S O W  constitutive model, care was taken to 
ensure that the implementation was consistent with and had the hooks necessruy for 
integration with the 2D/3D mesoscale model sintering work of Tikare and Braginsky. 
This is important because it is anticipated that the mesoscale work will lead to significant 
improvements in ow understanding of the sintering process at that scale which will result 
in a refmement of our capability to model at the continuum level. The capability to add 
this refinement as the mesoscale work progresses was of paramount importance. 

2.0 Verification 

oy comparing the JAS3D solution to the following cases for which “analytic” solutions 
are available: 
A uniaxial bar - sintering only; 
A uniaxial bar - sinter forging case (1 MPa applied axial stress); 
And a sphere - sintering only. 

The incremental implementation of the SOW model in JAS3D has been verified 

In all three cases the properties used were those for a 0.2 micron zinc oxide 
powder as reported by Olevsky, et. al(2001), namely: PL, = 3a  / r, , with LY = 1.27 J/m’ 

& ro = 1 Om; and v0 = [51.7(T/750)’ - 106.6(T/750)+ 56.4]~10’~Pa-s, with 
750 I T I 1000 “C at 5”C/min. The initial porosity and the elastic properties used were: 
So = 53%; E =123.7x109Pa; and v = 0.356. 
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Figure 8. Uniaxial Bar Sinter-Only Verification Problem 

2.1 Uniaxial Bar - Sinter-Only 

bar subjected to sintering-only is shown in Figure 1. Also shown is the JAS3D mesh used 
The comparison of JAS3D to the analytic solution for the first case of a uniaxial 

0 65 
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0 .*. 

Figure 9. Uniaxial Bar Sinter-Forge Verification Problem 

in the computation. This model contained two elements and 12 nodes, representing an 
octant of the overall model due to symmetry. In the process of verifying the 
implementation, we have started with the simplest case and slowly added complexity, so 
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this two-element model was an appropriate start. The JAS3D solution for the relative 
density essentially tracks the analytic solution. 

2.2 Uniaxial Bar - Sinter-Forge 

added complexity of an additional 1 MPa applied axial tensile stress is shown in Figure 2. 
The tensile stress reduces the shrinkage in the axial direction such that the effective 
relative density of the body is reduced from the sinter-only case. Once again, the JAS3D 
solution for the relative density tracks the analytic solution. 

2.3 Sphere - Sinter-Only 
The comparison of JAS3D to the analytic solution for the third case of a sphere 

subjected to sintering-only is shown in Figure 3. Note that, again, only an octant of the 
sphere needed to be modeled with JAS3D because of symmetry. This particular model 
contained 304 elements and 420 nodes. The additional complexity in this case is the 
much larger model and the truly 3D effect of the modeled volume. Again, the JAS3D 
solution for the relative density tracks the analytic solution. In this case, the JAS3D 
solution shows the relative density calculated at the central element and at the elements at 
the three vertices of the model. The solutions for all of the elements overlay each other, 
as well as overlaying the analytic solution. 

The results of a similar comparison for the same uniaxial bar but now with the 
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Figure 10. Sphere Sinter-Only Verification Problem 
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2.4 Numerical Performance of FEM Implementation 
Convergence for the solution of general sintering-only problems with an iterative 

code such as JAS3D is a challenge. Typically convergence is measured by the relative 
imbalance of the internal forces to the applied loads. In a pure sintering simulation, there 
are no applied loads, so there is a need to devise a measure for determining when 
convergence is reached for this type of general problem. In all of the verification 
problems above, the solution was converged to very tight convergence tolerance to 
ensure accuracy. For larger production problems, such a tight convergence tolerance will 
probably be too costly, hence the need to address the issue. A scheme to converge this 
type of problems has been developed whereby an estimate of the sintering forces that act 
on the body is first made and then point one percent of that force is used as the allowable 
imbalance in the problem for convergence. Using this scheme, the performance of the 
model was investigated using a model problem similar to Garino’s zinc oxide bi-layer bar 
experiment. This problem was assumed to be more representative in size of a production 
problem that the model would be used for. The computational performance of the model 
was investigated by varying the refinement (discretization) of the bi-layer bar and looking 
at its response as the refinement was increased from relatively coarse to very fine 
(hundreds of elements to tens-of-thousands of elements). It was found that the 
response of the bar did not vary significantly with refinement and thus the bulk geometry 
of a part could be predicted without resorting to a very refined model. However, the 
details of the deformation were not adequately captured without significantly fine 
refinement. By this we mean that the curvature (and presumably warpage, etc.) that might 
be of interest to predict cannot be captured with this model unless a significant level of 
refinement is achieved. Problems in which accurate predictions of the details of the 
deformation of the part are sought will be computational expensive (requiring either long 
computations or the use of massively parallel computing). 

3.0 Validation With Experiments 

JAS3D and investigated and quantified its computational performance, the next step in 
the process was the validation of the model against a set of experiments. To this end, 
some of the sintering experiments of T. J. Garino on zinc oxide powder have been 
modeled using the SOVS model and comparisons with two of them are discussed below. 
In all cases, the same material properties as reported for the verification problems above 
were also used for the simulations of these experiments. 

3.1 Bi-Layer Bar Experiment 

the sintering of a bi-layer bar consisting of the same powder but at different starting 
relative densities of 47% for the upper layer and 57% for the lower layer. The bar was 
originally 8.049 mm long by 4.79 mm wide. The upper layer was 1.323 mm thick while 
the lower layer was 1.308 mm thick. Because the upper layer was at a lower starting 
density than the lower layer, it was expected that the final shape of the bar would be such 
that the overall bar would curve up as shown in the photograph of Figure 4. Using what 
we found from the computational performance study mentioned above, we used a very 

Having verified the incremental implementation of the SOVS constitutive in 

The first of two experiments that we show comparisons for in this paper looked at 
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fine mesh to model this experiment (138,000 elements for a quarter model). The results 
from the JAS3D simulation was then compared to the data obtained from the experiment. 
Figure 4 shows a comparison of the predictions to the experiment. Both qualitative and 
quantitative comparisons were made. The simulation and the experimental results show 
very good agreement both in the bulk response as well as in the details (Le., the 
curvature). 

3.2 Bi-Layer Disk Experiment 
A second experiment, for which comparisons with the model are included in this 

paper, was a bi-layer disk experiment performed by Garino using the same ZnO powder 
but at different starting relative densities of 47% for the upper layer and 57% for the 
lower layer. So once again, the disk was expected to curve up similar to the shape shown 
schematically in Figure 5 .  The disk was originally 19.05 mm in diameter and each layer 
was 1 mm thick. The schematic of the experiment and the measured quantities along 
with a qualitative comparison of the experiment to the simulation are shown in Figure 5.  
Once again, we see relatively good agreement between the measured and computed 
results. The bulk computed responses of the disk are within 2% of the measured bulk 
responses. The computed “center thickness,” which is an indirect measure of the 
warpage of the disk, differs fiom the measured value by only 13.7%. 
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Figure 12. Comparison of Simulation to Garino’s Bi-Layer Disk Experiment 

4.0 Summary & Conclusions 

implemented, and demonstrated. The implementation uses the Skorohod-Olevsky 
viscous sintering constitutive description. The overall capability is based on a finite 
element formulation that allows 3D components to be modeled using SNL’s nonlinear 
large-deformation finite element code, JAS3D. This computational tool provides us with 
the ability to model sintering of complex three-dimensional components. The 
implementation has been verified against simple problems with known solutions. The 
numerical performance of the implementation has been explored and quantified. The 
capability has been validated with laboratory-scale experiments, performed by Garino, on 
ZnO powder. The implementation has the necessary interfacing to couple with the results 
from the sintering meso-scale modeling research being conducted by Tikare and 
Braginsky. The model can mimic measured relative densities and measured bulk and 
detailed deformations in the laboratory-scale experiments to within a few percent, 
indicating that the model is capable of capturing linear-viscous sintering behavior in 
ZnO. 

A continuum capability for modeling linear-viscous sintering has been developea, 
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Chapter 6 
Numerical Simulation of Anisotropic Shrinkage in a 2D Compact of 

Elongated Particles 

Veena Tikare, Michael Braginsky, Eugene Olevsky and D. Lynn Johnson 

Abstract 
Microstructural evolution during sintering of 2D compacts of elongated particles 

packed in different arrangements was simulated using a kinetic, Monte Carlo model. The 
model used simulates curvature driven grain growth, pore migration, vacancy formation 
and annihilation. Only the shape of the particles was anisotropic; all other extensive 
thermodynamic and kinetic properties such as surface energies and diffusivities were 
isotropic. We verified our model by simulating sintering in the analytically tractable case 
of simple-packed, elongated particles and comparing the shrinkage rates to those 
predicted analytically. Once our model was verified, we used it to simulate sintering in 
different geometries of elongated particles to gain understanding of differential 
shrinkage. 

Anisotropic shrinkage occurred in all compacts with aligned, elongated particles. 
However, the direction of higher shrinkage was in some cases along the direction of 
elongation and in other cases in the perpendicular direction depending on the details of 
the powder compact. In compacts of simple-packed, mono-sized, elongated particles, 
shrinkage was higher in the direction of elongation. In compacts of close-packed, mono- 
sized, elongated particles and of elongated particles with a size and shape distribution, the 
shrinkage was lower in the direction of elongation. The results of these simulations are 
analyzed and the implication of these results is discussed. 

1.0 Introduction 
An inescapable reality of ceramic processing is that almost all ceramics shrink at 

least 30% and as much as 50% in volume during sintering. This enormous dimensional 
change causes distortions in the shape and, in the extreme, fracture of the ceramic during 
sintering. The ability to predict and control these shape distortions has to a large extent 
determined the shape and size of ceramic products that could be manufactured. The 
tolerances to which dimensional changes need to be controlled continue to become 
increasingly tighter and limit the advance of many new technologies. One example is 
wireless communication technology, which relies on highly integrated, miniaturized 
components imbedded in multilayered ceramics (MLCs). Dimensional control due to 
sintering of the multimaterial components and circuitry is critical for optimal 
performance of such systems. 

In addition to the obvious difficulties of co-sintering different materials with 
different shrinkage rates, more subtle effects lead to warpage during sintering of tape cast 
ceramic layers used in MLCs. The individual ceramic layers themselves have some 
shrinkage anisotropy u on sinterin 
experimental ,5A7,8,9s'0J'J that show anisotropic shrinkage primarily in 

Ra and Cannon' have reviewed a number of B P i  
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tape cast ceramics. Most attributed the anisotropic s h r i g e  to the alignment of non- 
equiaxed particles and some to differential spacing of particles during green processing 
due to differential aging556 or relaxation7 of the binders. In their own work, Raj and 
Cannon show that shrinkage results &om particle orientation by the tape cast process. In 
all these works, the anisotropic shrinkage originated from inhomogeneities in green 
processing rather than from anisotropic thermodynamic or kinetic quantities. Raj et 
also simulated shrinkage in a system of perfectly packed elliptical particles using 
numerical methods developed by Zhang and Schneibel". They reported that shrinkage 
rates in the transverse direction (direction perpendicular to elongation) decreased as 
sintering progressed, particularly when grain boundary diffusion was much lower than 
surface diffusion. 

In this work, we seek to understand the origin of anisotropic shrinkage by 
simulating sintering in systems that have aligned, elongated particles with isotropic 
thermodynamic properties, such as surface energy, and isotropic kinetic properties, such 
as diffusitivity. We simulate shrinkage during sintering in several highly aligned system 
of mono-sized and distributed-sized, elongated particles. The motivation is to explore 
and understand the mesoscale behavior by examining the microstructural evolution of 
elongated particles and the pore geometries. We also studied the shrinkage of powder 
compacts in the directions parallel and perpendicular to elongation and attempted to 
understand how microstructural evolution influenced shrinkage. 

2.0 Model and Simulation Method 

following processes: 

Grain growth by short range diffusion of atoms from one side of the grain boundary to 
the other; 
Long range diffusion of material to pores by grain boundary diffusion and along pore 
surfaces by surface diffusion; 
Vacancy annihilation at grain boundaries. 

The two-dimensional model presented here is limited to consideration of the 

This model has been presented in a previous work and shown to simulate all these 
processes correctly19. In the model, an ensemble of grain sites and pore sites is allowed 
to populate a square lattice. The grain site can assume one of many degenerate states, 
qgram = [I,  2 ... Q] where Q is the total number of grain states and q is the state of a grain 
site. The pore sites can assume only one state, qpore= - I .  Contiguous grain sites of the 
same state q form a grain and contiguous pore sites form a pore. Grain boundaries exist 
between neighboring grain sites of different states, q, and pore-grain interfaces exist 
between neighboring pore and grain sites. The equation of state for these simulations is 
the sum of all the neighbor interaction energies in the system given by 

eq. 1 



where N is the total number of sites, 6is the Kronecker delta with 6(qr = qJ = I and 6(q, 
= 0, qz is the state of the grain or pore at site i and q, is the state of the nearest 

neighbor at site j .  Thus, the only energy considered in the simulation is the interfacial 
energy and all unlike neighbors contribute one arbitrary unit of energy to the system. As 
pore sites can assume only one state, qPpe= -1, there are no pore boundaries and all pore 
sites coalesce. In contrast, grain sites can assume many states making grain boundaries 
possible. This yields a two-component, two-phase system with uniform, isotropic 
interfacial energies between grains and between grains and pores. 

Grain growth is simulated using the method developed in previous 
First, a grain site is chosen at random from the simulation space. Then, a new state qgrUm 
is chosen at random from all neighboring grain states. The grain site is temporarily 
assigned the new state and the change in energy is evaluated using equation 1. Next, the 
standard Metropolis algorithmz2 is used to perform the grain growth step based on 
Boltzmann statistics. A random number, R, between 0 and 1 is generated. The transition 
probability, P, is calculated using 

P =  
1 for h E l 0  

eq. 2 

. 

where kB is the Boltzmann constant and Tis the simulation temperature, a variable that 
defines the degree of thermal fluctuation in the system. If R SP, then the grain growth 
step is accepted, if not, the original state is restored. The simulation temperature used for 
grain growth was kBT = 0, which has been shown to simulate grain growth correctl9'. 
Note that at kBT = 0, all grain growth steps that result in higher energy are not accepted, 
only equal energy or lower energy grain growth steps are accepted. 

Pore migration is simulated using conserved dynamics, so that the total number of 
pore sites and grain sites is the same after a pore migration step. A pore site is chosen 
and a neighboring site is chosen at random. If the neighboring site is a grain site, the two 
sites are temporarily exchanged with the grain site assuming a new state qgTU,* where 
qgraln results in the minimum energy. This minimum-energy, pore-grain exchange 
simulates pore migration by surface diffusionz3. The change in energy for this exchange 
is calculated using equation 1 and again the standard Metropolis algorithm is used to 
perform the pore migration step using equation 2 to determine the transition probability. 
The simulation temperature used for the pore migration step was kBT= 0.7. This higher 
temperature was necessary to simulate pore migration and is discussed in other 

the grain b o u n d a r i e ~ ~ ~ ' ~ ~ . ~ ?  As vacancies are annihilated, the center of mass of the 
adjoining grain moves toward the grain boundary, thus giving densification. The rate- 
limiting step in this process is for the vacancies to diffuse along a distance proportional to 

Densification in c stalline solids occurs by uniform annihilation of vacancies at 
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the length of the grain boundary. In this model a vacancy is defined as a single, isolated 
pore site that is not connected to any other pore sites. The algorithm used for vacancy 
annihilation is the following. A pore site is chosen. If it happens to be a vacancy (an 
isolated pore site) on a grain boundary, it is annihilated. 

Annihilation is simulated as follows. A straight line is drawn from the isolated 
pore site through the center of mass of the adjacent grain to the simulation boundary. 
Next, the isolated pore site and the boundary grain site are exchanged with the grain site 
assuming the q state of the adjacent grain. This algorithm conserves mass globally, 
moves the center of mass of the adjacent grain towards the annihilation site, and 
annihilates a vacancy. The frequency of the annihilation attempts is adjusted to simulate 
the diffusion of vacancies along the grain boundary. As the grain boundary length 
increases. time between annihilations also increases as: 

eq. 3 

where fannl is the time between annihilation attempts, tannt is the time between annihilation 
attempts for the initial grain boundary length L'gb at the beginning of sintering, and Lgb is 
the current grain boundary length. Adjusting the annihilation frequency in this manner 
simulates uniform annihilation of vacancies along the grain boundary. 

Sintering is simulated by attempting the grain growth, pore migration and vacanq 
annihilation steps in sequence, repeatedly. Time in the model is measured in units of 
Monte Carlo step; lMCS corresponds to N attempted changes where N is the total 
nmber of sites in the system. MC time is linearly proportional to real timez7 in material 
systems that have the characteristics simulated by the model. The proportionality 
constant of a given material can be found by comparing simulated microstructural 
evolution to that of the material. Three different geometries were simulated, (1) simple- 
packed, mono-sized elongated particles as shown in figure 1, (2) close-packed, mono- 
sized elongated particles shown in figure 5, and (3) elongated particles with a wide size 
distribution packed so that their long axis is aligned primarily in one direction as shown 
in figure 8a. The grain growth, pore migration and annihilation algorithms are applied as 
described above to simulate sintering. Shrinkages in the X- and Y-directions are 
measured as functions of time. 



3.0 Analytical Solution 

determined. Following the analysis of JohnsonTthe shrinkage anisotropy was predicted 
for the geometry shown in figure 1 .  Johnson calculated shrinkage rate by equating the 

To verify our simulation results, an anal c solution for shrinkage was 

Y 
A 

‘ . a  

* X  

Figure 1. Schematic showing the initial microstructure used to calculate shrinkages in the 
X- and Y-directions analytically. 

flux of material to the pore to the change in pore size due to the material flowing in. The 
flux was due to the chemical potential gradient along the grain boundaries due to the 
stress applied normal to the grain boundaries by the pores. The only transport 
mechanism considered is grain boundary diffusion. The fluxes along the two sets of 
grain boundaries in the X- and Y-directions, respectively, are 

eq. 4 
DS dp DS dp 

RkTdx RkT dy 
and J =--- J =--- 

where Jx and J, are the fluxes along the X-orientated and Y-orientation grain boundaries, 
D is grain boundary diffusivity, 6is grain boundary thickness, R i s  molar volume, k is 
Boltmann’s constant, Tis temperature, and pis chemical potential. 

Since all transport except grain boundary diffusion is negligible, continuity 
requires that 

VJ = const eq. 5 
Furthermore, the chemical potential p and stress normal to the grain boundary dare 
related as 

VP Vu=- 
R 

The solution to the stress (or chemical potential) equation is of the form 

60 
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eq. 7 2 o = C l i X  + C Z i X  + Cji 

where i denotes either the X- or Y-direction, cli, czi and c3i are constants. Two boundary 
conditions can be deduced. By symmetry, stress gradient at the center of the neck, x = 0 
andy = 0, i s v o ,  = 0 ,  which gives c2i =O. Stress at the pore surface, x = a and y = b, is 

given by the Gibbs-Thompson relation oi = - - where y is the surface energy and r is Y 
r 

2 Y  a n d c j Y = - c  b 2 Y  --. 
r l Y  

the pore radius of curvature, which gives cjX = -c,,a - - 
r 

Finally, the force balance on the grain boundary requires 

e e $ark = ysin- and fa''= ysin- 
2 2 

eq. 8 

where 8 is the dihedral angle. Substituting equation 7 into 8 and solving for cii gives 
~ ~~ 

e 
2 

3y(r sin - + b) e 
2 

3y(r sin - + a) 
and cly = - c,, = - 

2a3r 2b3r 
Substituting these into equation 7 and using equation 4 gives the fluxes into the pore 
along the X- and Y-oriented grain boundaries from 0 to a and 0 to b, respectively 

e 
J, = kTa 3 m ,  r (rsin5+a) eq. 9a 

and 
e 

Jy= kTb 3m;(rsinT+b) r eq. 9b 

If we consider a unit cell with a pore at the center, with original height 2(b, + ro ) and 
length 2(a, + ro ) , we can see that a total flux of 2J,dt comes in during time element 
dt . This causes a collapse of an amount dA,, giving mass of 2adA,flowing into the 
pore. Thus 

J,Sldt = adA, and J,,Sldt = bdA, eq. 10 

where A, and A, are the change in grain length in the X- and Y-directions, respectively. 
Shrinkage rate is defined as 

and sy ="( dt 2(bo " +ro) ) eq . l l  

where a,, bo and r, are the initial dimensions. Substituting equations 10 into 11 ana 
taking the ratio of the two shrinkage rates 



eq. 12 

Thus, we find that the ratio of shrinkage rates is a function of the grain and pore 
dimensions for the geometry shown in figure 1. 

Results 

4.1 Model verification by comparison of simulation results to the analytical solution 

vacancy annihilation steps as described previously. The microstructural evolution of the 
system is shown in figure 2. 

The sintering simulations were run using the grain growth, pore migration and 
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Figure 2. Microstructural evolution during sintering of simple-packed, elongated 
particles from the (a) initial microstructure, at (b) time = 50,000 MCS and, (c) time = 

2 19,000 MCS. 

The starting configuration is perfectly elongated particles with pores at all the 
grain junctions. As the simulation progresses, vacancies are formed at the pore surfaces 
and difise along grain boundaries. They are annihilated at the grain boundaries. This 
leads to densification of the system. Grain growth does not occur while the pores are 
present at the junctions and none is expected, as the grain boundaries are not curved. 
However, once the pores shrink away and four grains meet to form a quadra-junction, 
they quickly grow in a manner so as to eliminate the quadra-junction and form a triple 
junction as seen in figure 2c. Again this is expected as quadra-junctions are unstable 
configurations in a system with uniform grain boundary energies. While the shapes of 
pores do fluctuate around the minimum energy shape, they do not migrate as they cannot 
detach from the grain boundaries. The simulations show greater shrinkage in the 
direction of elongation (X-direction) than perpendicular to elongation (in the Y- 
direction). 

The shrinkages in the X- and Y-directions measured during the sintering 
simulations are plotted in figure 3 as functions of time for the case shown in figure 2. AQ 
the microstructures in figure 2 suggested, shrinkage in the direction of elongation is 
larger than that perpendicular to it. The grain boundary lengths, a and 6, and the pore 
size r were measured for the simulation shown in figure 2 and used to calculate the 
predicted shrinkage rate ratio using equation 12. The shrinkage ratios measured from the 
simulation are in good agreement with the analytically predicted ratio as shown in figure 
4 during sintering of elongated, simple-packed particles. 
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gure 3. Shrinkage in the directions parallel (X) and perpendicular (Y) to elongation 
ring sintering of simple-packed, elongated, monosized particles. 
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Figure 4. Comparison of shrinkage ratio measured from simulation to that predicted 
sintering theory given in eq. 12. 
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4.2 Simulation of sintering in other compacts of elongated particles 
We used the verified model to simulate sintering in other compacts of elongated 

particles. The next geometry that was simulated was a 2D compact consisting of close- 
packed, elongated particles with pores at all the grain junctions, figure 5. The 
microstructure evolution of this system is shown in figure 6. As in the previous set of 
simulations, the vacancies are formed at the pore surface, diffuse along grain boundaries 
and are annihilated at a uniform rate at the grain boundaries. This leads to densification 
of the system. Grain growth does not occur while the pores are present at the junctions 
and none is expected, as the grain boundaries are not curved. However, once pores 
disappear at the junctions, grains are no longer pinned and rapidly grow until they are 
pinned by the next set of pores as seen in figure 6c. The shrinkage in this system is also 
anisotropic, however, it is in the opposite direction as shown by figure 7, a plot of 
shrinkages in the X- and Y-directions as functions of simulation time. Shrinkage 
perpendicular to the direction of elongation (the Y-direction) is higher. This predicted by 
the analytical model. Equations 9 and 10 and the first equation 11 still obtain, with a and 
b as defined in figure 5. However, the second equation 11 must be multiplied by 2, since 
there are now two grain boundaries in the Y-direction in the unit cell of the 
microstructure. Thus, the ratio of shrinkage rates for this geometry is 

eq. 13 

Y 

Figure 5. Schematic showing the initial arrangements of close-packed, elongated 
particles sintering. 



Examination of the microstructure shows that for the geometry in figure 6, the 
concentration gradients along the grain boundaries in the X- and Y-directions are almost 
identical as the pore size and grain boundsuy length are similar in both directions (a  =b). 
However, the grain boundary length per unit area in the X-directions is approximately 
double that in the Y-direction. Therefore, twice as many annihilations per unit area of 
simulation space OCCUI at grain boundaries in the X-direction leading to higher shrinkage 
in the Y-direction as predicted by eq. 13. Note that if a was sufficiently larger than b, 
then the direction of higher shrinkage would be change from the Y-direction to the X- 
direction. 

. 

- ----TI- 

Figure 6 .  Microstructural evolution during sintering of closed packed elongated particles 
from the (a) initial microstructure, at (b) time = 9,000 MCS, and (c) time = 22,000 MCS. 
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Figure 7. Shrinkage in the directions parallel (X) and perpendicular (Y) to elongation 
during sintering of close-packed, elongated particles. 

The final microstructure that we studied was one with elongated particles of 
arbitrary sizes and shapes. We obtained the starting microstructure for this simulation by 
generating an equi-axed microstructure then stretching it in one direction, the X- 
direction, to double its former length. The starting microstructure is shown in figure 8a. 
Unlike the previous cases, the particles and pores are of different sizes and shapes. 
Furthermore, while particles are elongated in the X-direction, they are not perfectly 
aligned in this direction as in the previous simulations. The subsequent microstructural 
evolution is also shown in figure 8. Many differences were seen in this simulation from 
the previous cases. Initially, both grains and pores are elongated, however, pores became 
equi-axed very quickly by surface diffusion, whereas grains remained elongated much 
longer. Since grain boundaries have curvature, grains grew. Pores continue to pin grain 
growth, however, they move due to the curved grain boundaries exerting uneven force on 
them. As pores move, they coalesce to form larger pores. These pore coalescence events 
allow grains to grow locally. Pores grow by coalescence, but also shrink at the same time 
by vacancy formation and annihilation, which in turn leads to densification. Another 
important difference to note is that as the microstructure coarsened, grains grew 
increasingly more equi-axed. 



i 

Figure 8. Microstructural evolution in randomly packed elongat 
size and shape for (a) the initial microstructure and at (b) time = 
7,000 MCS and (c) time = 30,000 MCS. 

ed particles of arbitrary 
1,000 MCS, (c) time = 
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Shrinkage during sintering in the directions parallel and perpendicular to 
elongation is shown in figure 9. The densification behavior of a powder compact with 
elongated particles of arbitrary sizes and shapes was also different from the cases of 
perfectly packed, mono-sized particles. The densification rate decreased as the grain 
grew. This is to be expected as the diffusion distance for vacancies along grain 
boundaries increased. In the perfectly packed simulations, grain growth was pinned and 
the distance for vacancies to difise remained virtually constant until pores disappeared, 
thus giving constant shrinkage rates. Anisotropic shrinkage was observed in this system 
too, with lower shrinkage in the direction of elongation. However, the anisotropy in 
shrinkage rates decreased with time as the microstructure became more isotropic. 

Figure 9. Shrinkage in the directions parallel (X) and perpendicular (Y) to elongation 
during sintering in powder compacts of particles of arbitrary shape and size. 

5.0 Discussion 
Simulations in the previous section have shown that anisotropic shrinkage can 

occur when elongated particles are compacted with particles aligned in one direction. 
However, highly anisotropic shrinkage can occur with higher shrinkage in the direction 
of elongation or in the perpendicular direction depending on the details of particle and 
pore arrangement. If particles and pores are arranged so that annihilations occur 
preferentially along grain boundaries oriented in certain directions, then shrinkage occurs 
preferentially in the direction perpendicular to that direction. In the first case studied and 
shown in figures 2 and 3, annihilations occurred primarily at grain boundaries aligned 
perpendicular to the direction of elongation. Thus, shrinkage occurred preferentially in 
the direction of elongation. In the next two cases studied and shown in figures 5 to 9, 
preferential shrinkage occurred perpendicular to the direction of elongation as more 
vacancies were annihilated at grain boundaries aligned in the direction of elongation. 
This apparently contradictory shrinkage behavior from microstructures that are very 
similar was unexpected. However, it is clear from the simulation that microstructures 
with similar characteristics can give differing anisotropic shrinkage behavior not just in 
magnitude, but also in the preferential shrinkage direction. These observations may 
explain why different experiments studying anisotropic shrinkages due to different tape 
casting processing methods have given what appear to be contradictory results. 
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In this work, we simulated systems with highly elongated, aligned particles that 
sintered with highly exaggerated shrinkage anisotropy to emphasize the cause of the 
shrinkage anisotropy. In real material systems such as MLCs, the shrinkage anisotropy is 
much less with differences in shrinkage ranging up to a few percent. This is due to a 
variety of reasons. The powders used for MLCs are made from nominally equi-axed 
particles; tape casting just aligns particles that deviate slightly. Thus, neither the particles 
nor the alignment due to the tape casting process is as exaggerated as the structures 
presented in figures 2 ,6  and 8. However, in all cases, the origin of anisotropic shrinkage 
is the same; it is that annihilations occur preferentially along grain boundaries oriented 
predominately in one direction. 

While there are limitations, the simulations in this paper demonstrate the utility of 
this sintering model. A limitation of this sintering model is that it is applicable to 
situations where uniform shrinkage occurs and thus, there are no long-range stresses due 
to differential sintering. The model also assumes that grain boundary sliding is facile so 
that shrinkage at the various grain boundaries is independent of each other. In spite of 
these limitations, the model is useful to understand sintering under many different 
conditions. Furthermore, this model makes very few assumptions about the geometry of 
grains and pores. Many different types of data can be mined from the microstructural 
evolution simulations. Shrinkage in any direction, grain and pore size, grain and pore 
shape, grain boundary and pore surface length and many other features can be measured 
during sintering and correlated with each other to gain an understanding of sintering. 

6.0 Conclusions 

two dimensional powder compacts of aligned, elongated particles with particular 
attention given to directional shrinkage in the direction of elongation and in the direction 
perpendicular to elongation. Anisotropic shrinkage occurred in all compacts with 
aligned, elongated particles, however, the direction of higher shrinkage was in some 
cases along the direction of elongation and in other cases in the perpendicular direction 
depending on the details of the powder compact. A variety of shrinkage behavior, in both 
preferential shrinkage direction and magnitude, was found depending on microstructural 
details such as grain and pore shapes, pores distribution, grain alignment, etc. However, 
the origin of anisotropic shrinkage in all cases is due to annihilations occurring 
preferentially along grain boundaries oriented predominately in one direction. 
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