515 research outputs found

    Narratives in institutional hosting : the experience through institutionalized adolescents

    Get PDF
    Revista de Psicologia da Criança e do Adolescente. - ISSN 1647-4120. - V. 9, n. 2 (2018). - p. 203-211.Entrar na adolescência quer dizer embarcar em uma fase de mudanças físicas e psicológicas significativas, conforme citam Aberastury e Knobel (2011). A adolescência, então, pode ser entendida como uma fase de reorganização, onde todo o equilíbrio, ora conquistado na infância, dará lugar ao processo de conquista de identidade nesta nova fase. E o adolescente em contexto de acolhimento institucional? Em situação de vulnerabilidade, o acolhimento institucional de crianças e adolescentes é uma medida protetiva importante na rede de proteção à infância e adolescência, demandando expressiva atenção. O campo da adolescência para o adolescente em acolhimento institucional poderá ser reorganizado, uma vez que estará tutelado pelo Estado em uma instituição, o que poderá implicar viver de acordo com a cultura existente e com seus pares que vivenciam também a fase de transformação. E entrar nesta fase seria lidar também com os conflitos de outros adolescentes que possuem identidades, vivências e culturas diferentes. Mergulhar no universo das instituições de acolhimento significa se deparar com a realidade de aprendizagens práticas, e intensas, sobre como o adolescente se percebe neste contexto. De acordo com Negrão e Constantino (2011), é preciso ouvir o que as vivências do adolescente em situação de acolhimento institucional produzem em nível individual e coletivo. Neste trabalho são apresentadas as experiências do viver institucionalizado através das narrativas de adolescentes, durante o desenvolvimento de pesquisa realizada em Unidade de Acolhimento no município de Nova Iguaçu, Rio de Janeiro, com o intuito de compartilhar as realidades e refletir acerca do tema.Entering adolescence means embarking on a phase of significant physical and psychological changes, as Aberastury and Knobel (2011) cite. Adolescence, then, can be understood as a phase of reorganization, where all the balance, now achieved in childhood, will give way to the process of conquest of identity in this new phase. And the adolescent in an institutional reception context? In a situation of vulnerability, the institutional reception of children and adolescents is an important protective measure in the network of protection for children and adolescents, demanding significant attention. The field of adolescence for the adolescent in institutional reception can be reorganized, since it will be protected by the State in an institution, which may imply living according to the existing culture and with its peers who also experience the transformation phase. And entering this phase would also deal with the conflicts of other adolescents who have different identities, experiences and cultures. Immerse yourself in the universe of host institutions means to face the reality of practical and intense learning about how the teenager perceives himself in this context. According to Negrão and Constantino (2011), it is necessary to listen to what the experiences of the adolescent in an institutional reception situation produce at the individual and collective level. In this work the experiences of the institutionalized living through the narratives of adolescents are presented during the research conducted in the Reception Unit in the municipality of Nova Iguaçu, Rio de Janeiro, in order to share the realities and reflect on the theme

    Inclusion Complex Of S(-) Bupivacaine And 2-hydroxypropyl- β-cyclodextrin: Study Of Morphology And Cytotoxicity

    Get PDF
    Local anesthetics (LA) belong to a class of pharmacological compounds that attenuate or eliminate pain by binding to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nerve impulse. S (-) bupivacaine (S(-) bvc) is a local anesthetic of amino-amide type, widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. This article focuses on the characterization of an inclusion complex of S(-) bvc in 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). Differential scanning calorimetry, scanning electron microscopy and X-Ray diffraction analysis showed structural changes in the complex. In preliminary toxicity studies, the cell viability tests revealed that the inclusion complex decreased the toxic effect (p<0.001) produced by S(-) bvc. These results suggest that the S(-) bvc:HP-β-CD inclusion complex represents a promising agent for the treatment of regional pain.273207212Araújo, D.R., Cereda, C.M., Brunetto, G.B., Pinto, L.M.A., Santana, M.H., de Paula, E., Encapsulation of mepivacaine prolongs the analgesia provided by sciatic nerve blockade in mice (2004) Can J Anaesth, 51, pp. 566-572Araújo, D.R., Fraceto, L.F., Braga, A.F.A., de Paula, E., Drug-delivery systems for racemic bupivacaine (S50-R50) and bupivacaine enantiomeric mixture (S75-R25):cyclodextrins complexation effects on sciatic nerve blockade in mice (2005) Rev Bras Anestesiol, 55, pp. 316-328Araújo, D.R., Moraes, C.M., Fraceto, L.F., Braga, A.F.A., de Paula, E., Cyclodextrin-bupivacaine enantiomeric mixture (S75-R25) inclusion complex and intrathecal anesthesia in rats (2006) Rev Bras Anestesiol, 56, pp. 495-506Bibby, D., Davies, N.M., Tueker, I.G., Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems (2000) Int J Pharm, 197, pp. 1-11Covino, B.G., Vassalo, H.G., (1976) Local anesthetics: Mechanisms of action and clinical use, , New York: Grune and Stratton;, 255pFoster, R.H., Markham, A., Levobupivacaine. A review of its pharmacology and use as a local anaesthetic (2000) Drugs, 59, pp. 551-579Grant, G.J., Bansinath, M., Liposomal delivery systems for local anesthetics (2001) Reg Anesth Pain Med, 26, pp. 61-63Gristwood, R.W., Cardiac and CNS toxicity of levobupivacaine: Strengths of evidence for advantage over bupivacaine (2002) Drug Saf, 25, pp. 153-163Hirayama, F., Uekama, K., Cyclodextrin-based controlled drug release system (1999) Adv Drug Deliv Rev, 36, pp. 125-141Huang, Y.F., Pryor, M.E., Mather, L.E., Veering, B.T., Cardiovascular and central nervous system effects of intravenous S-bupivacaine and bupivacaine in sheep (1998) Anesth Analg, 86, pp. 797-804Jong, R.H., (1994) Local anesthetics, , Springfield: CC. Thomas;, 325pKohata, S., Jyodi, K., Ohyoshi, A., Thermal decomposition of cyclodextrins (α -, β-, γ, and modified β-CyD) and of metal-(β-CyD) complex in the solid phase (1993) Thermochim Acta, 217, pp. 187-198Loftsson, T., Brewster, M.E., Pharmaceutical application of Cyclodextrin. 1. Drug solubilization and stabilization (1996) J Pharm Sci, 85, pp. 1017-1025Loukas, Y.L., Vraka, V., Gregoriadis, G., Novel non-acidic formulations of haloperidol complexed with beta-cyclodextrin derivatives (1997) J Pharm Biomed Anal, 16, pp. 263-268Mather, L.E., McCall, P., McNicol, P.L., Bupivacaine enantiomer pharmacokinetics after intercostal neural blockade in liver transplant patients (1995) Anesth Analg, 80, pp. 328-335Michaud, M., Icart, S., Determination of the substitution of hydroxypropylbetadex using fourier transform infrared spectrophotometry (2001) PharmEuropa, 13, pp. 714-716Naidu, N.B., Chowdary, K.P.R., Murthy, K.V.R., Satyanarayana, V., Hayman, A.R., Becket, G., Physicochemical characterization and dissolution properties of meloxicam-cyclodextrin binary systems (2004) J Pharm Biomed Anal, 35, pp. 75-86Pinto, L.M.A., Fraceto, L.F., Santana, M.H.A., Pertinhez, T.A., Oyama, S., de Paula, E., Physico-chemical characterization of benzocaine-β-cyclodextrin inclusion complexes (2005) J Pharm Biomed Anal, 39, pp. 956-963Ren, X., Xue, Y., Liu, J., Zhang, K., Zheng, J., Lou, G., Gou, C., Shen, J., A novel cyclodextrin-deri ved tellurium compound with glutathione peroxidase (2002) Chembiochem, 3, pp. 363-365Rose, J.S., Neal, J.M., Kopacz, D.J., Extended-duration analgesia: Update on microspheres and liposomes (2005) Reg Anesth Pain Med, 30, pp. 275-285Strichartz, G.R., Ritchie, J.M., (1987) Local anesthetics: Handbook of experimental pharmacology, , Berlin: Springer-Verlag;, 445pThompson, D.O., Cyclodextrin-enabling excipients: Their present and future use in pharmaceuticals (1997) Crit Rev Ther Drug Carrier Syst, 14, pp. 1-10

    Convexity in partial cubes: the hull number

    Full text link
    We prove that the combinatorial optimization problem of determining the hull number of a partial cube is NP-complete. This makes partial cubes the minimal graph class for which NP-completeness of this problem is known and improves some earlier results in the literature. On the other hand we provide a polynomial-time algorithm to determine the hull number of planar partial cube quadrangulations. Instances of the hull number problem for partial cubes described include poset dimension and hitting sets for interiors of curves in the plane. To obtain the above results, we investigate convexity in partial cubes and characterize these graphs in terms of their lattice of convex subgraphs, improving a theorem of Handa. Furthermore we provide a topological representation theorem for planar partial cubes, generalizing a result of Fukuda and Handa about rank three oriented matroids.Comment: 19 pages, 4 figure

    Proton magnetic resonance spectroscopy study of juvenile myoclonic epilepsy patients suggests involvement of a specific neuronal network

    Get PDF
    OBJECTIVES: The neuroanatomical basis and the neurochemical abnormalities that underlay juvenile myoclonic epilepsy (JME) are not fully defined. While the thalamus plays a central role in synchronization of widespread regions of the cerebral cortex during a seizure, emerging evidence suggests that all cortical neurons may not be homogeneously involved. The purpose of this study was to investigate the cerebral metabolic differences between patients with JME and normal controls. METHODS: All patients had a JME diagnosis based on seizure history and semiology, EEG recording, normal magnetic resonance neuroimaging (MRI) and video-EEG. Forty JME patients (JME-P) were submitted to 1.5 T MRI proton spectroscopy (1H-MRS), multi-voxel with PRESS sequence (TR/TE = 1500/30 ms) over the following locations: prefrontal cortex (PC), frontal cortex (FC), thalamus, basal nuclei, posterior cingulate gyrus (PCG), insular, parietal and occipital cortices. We determined ratios for integral values of N-acetyl aspartate (NAA) and glutamine-glutamate (GLX) over creatine-phosphocreatine (Cr). The control group (CTL) consisted of 20 age and sex-matched healthy volunteers. RESULTS: Group analysis demonstrated a tendency for lower NAA/Cr ratio of JME-P compared to CTL predominantly on FC, PC, thalamus and occipital cortex. When compared to CTL, JME-P had a statistically significant difference in GLX/Cr on FC, PC, insula, basal nuclei, PCG and on thalamus. When evaluating the relationship among the various components of this epileptic network among JME-P, the strongest correlation occurred between thalamus and PC. Also, we found a significant negative correlation between NAA/Cr and duration of epilepsy. CONCLUSION: Reductions in NAA may represent loss or injury of neurons and/or axons, as well as metabolic dysfunction while glutamate is considered to be an excitatory neurotransmitter in the brain which is involved in the pathogenesis of epileptogenic seizures.UNIFESP-EPM Hospital São PauloUNIFESP, EPM, Hospital São PauloSciEL

    [vasopressin Intravenous Infusion Causes Dose Dependent Adverse Cardiovascular Effects In Anesthetized Dogs].

    Get PDF
    BACKGROUND: Arginine vasopressin (AVP) has been broadly used in the management of vasodilatory shock. However, there are many concerns regarding its clinical use, especially in high doses, as it can be associated with adverse cardiovascular events. OBJECTIVE: To investigate the cardiovascular effects of AVP in continuous IV infusion on hemodynamic parameters in dogs. METHODS: Sixteen healthy mongrel dogs, anesthetized with pentobarbital were intravascularly catheterized, and randomly assigned to: control (saline-placebo; n=8) and AVP (n=8) groups. The study group was infused with AVP for three consecutive 10-minute periods at logarithmically increasing doses (0.01; 0.1 and 1.0 U/kg/min), at them 20-min intervals. Heart rate (HR) and intravascular pressures were continuously recorded. Cardiac output was measured by the thermodilution method. RESULTS: No significant hemodynamic effects were observed during 0.01 U/kg/min of AVP infusion, but at higher doses (0.1 and 1.0 U/kg/min) a progressive increase in mean arterial pressure (MAP) and systemic vascular resistance index (SVRI) were observed, with a significant decrease in HR and the cardiac index (CI). A significant increase in the pulmonary vascular resistance index (PVRI) was also observed with the 1.0 U/kg/min dose, mainly due to the decrease in the CI. CONCLUSION: AVP, when administered at doses between 0.1 and 1.0 U/kg/min, induced significant increases in MAP and SVRI, with negative inotropic and chronotropic effects in healthy animals. Although these doses are ten to thousand times greater than those routinely used for the management of vasodilatory shock, our data confirm that AVP might be used carefully and under strict hemodynamic monitoring in clinical practice, especially if doses higher than 0.01 U/kg/min are needed.942213218, 229-234, 216-22
    corecore