8,559 research outputs found

    The Experimental plan of the 4m Resonant Sideband Extraction Prototype for The LCGT

    Get PDF
    The 4m Resonant Sideband Extraction (RSE) interferometer is a planned prototype of the LCGT interferometer. The aim of the experiment is to operate a powerrecycled Broadband RSE interferometer with suspended optics and to achieve diagonalization of length signals of the central part of the interferometer directly through the optical setup. Details of the 4m RSE interferometer control method as well as the design of the experimental setup will be presented

    Origin of the tetragonal-to-orthorhombic (nematic) phase transition in FeSe: a combined thermodynamic and NMR study

    Get PDF
    The nature of the tetragonal-to-orthorhombic structural transition at Ts90T_s\approx90 K in single crystalline FeSe is studied using shear-modulus, heat-capacity, magnetization and NMR measurements. The transition is shown to be accompanied by a large shear-modulus softening, which is practically identical to that of underdoped Ba(Fe,Co)2_2As2_2, suggesting very similar strength of the electron-lattice coupling. On the other hand, a spin-fluctuation contribution to the spin-lattice relaxation rate is only observed below TsT_s. This indicates that the structural, or "nematic", phase transition in FeSe is not driven by magnetic fluctuations

    Patient-Specific Neurovascular Simulator for Evaluating the Performance of Medical Robots and Instrumens

    Get PDF
    Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, May 200

    Continuous metal-insulator transition of the antiferromagnetic perovskite NaOsO3

    Full text link
    Newly synthesized perovskite NaOsO3 shows Curie-Weiss metallic nature at high temperature and suddenly goes into an antiferromagnetically insulating state at 410 K on cooling. Electronic specific heat at the low temperature limit is absent, indicating that the band gap fully opens. In situ observation in electron microscopy undetected any lattice anomalies in the vicinity of the transition temperature. It is most likely that the antiferromagnetic correlation plays an essential role of the gap opening.Comment: 13 pages, 5 figures, PHYS. REV. B 80, 161104(R),(2009

    The Spectrum of the Black Hole X-ray Nova V404 Cygni in Quiescence as Measured by XMM-Newton

    Get PDF
    We present XMM observations of the black hole X-ray nova V404 Cygni in quiescence. Its quiescent spectrum can be best fitted by a simple power-law with slope 2. The spectra are consistent with that expected for the advection-dominated accretion flow (ADAF). V404 Cyg was roughly equal in luminosity compared to the previous observation of Chandra. We see variability of a factor of 4 during the observation. We find no evidence for the presence of fluorescent or H-like/He-like iron emission, with upper limits of 52 eV and 110 eV respectively. The limit on the fluorescent emission is improved by a factor of 15 over the previous estimate, and the restriction on H-like/He-like emission is lower than predicted from models by a factor of roughly 2.Comment: 6 pages, 7 figures, ApJ accepte

    Are N=1 and N=2 supersymmetric quantum mechanics equivalent?

    Full text link
    After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.Comment: 15 page

    Bioink properties before, during and after 3D bioprinting

    Get PDF
    Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration and interaction with the material. A calibrated computational framework is able to predict the tissue development and maturation and to optimize the bioprinting input parameters such as the starting material, the initial cell loading and the construct geometry. In this contribution relevant bioink properties are reviewed and discussed on the example of most popular bioprinting approaches. The effect of cells on hydrogel processing and vice versa is highlighted. Furthermore, numerical approaches were reviewed and implemented for depicting the cellular mechanics within the hydrogel as well as for prediction of mechanical properties to achieve the desired hydrogel construct considering cell density, distribution and material-cell interaction

    Dynamics of metallic stripes in cuprates

    Full text link
    We study the dynamics of metallic vertical stripes in cuprates within the three-band Hubbard model based on a recently developed time dependent Gutzwiller approximation. As doping increases the optical conductivity shows transfer of spectral weight from the charge transfer band towards i) an incoherent band centered at 1.3eV, {ii} a Drude peak, mainly due to motion along the stripe, {iii} a low energy collective mode which softens with doping and merges with ii} at optimum doping in good agreement with experiment. The softening is related to the quasidegeneracy between Cu centered and O centered mean-field stripe solutions close to optimal doping.Comment: 4 pages, 5 figures, corrections to Fig.
    corecore