2,511 research outputs found

    Diamonds from the lower mantle?

    Get PDF

    The miscibility of calcium silicate perovskite and bridgmanite: A single perovskite solid solution in hot, iron-rich regions

    Get PDF
    Calcium silicate perovskite and bridgmanite are two phases believed to coexist throughout the lower mantle, which at some temperature, at least theoretically, dissolve into each other to form a single perovskite solid solution (Ca_{x}M_{1}−{x}_SiO_{3}). This may have large seismic and geochemical implications due to the changes in density, elasticity and element partition coefficients between single and mixed phase perovskites. DFT Molecular Dynamics has been used to estimate the miscibility of bridgmanite and calcium perovskite at pressures between 25 and 125 GPa. At 125 GPa (where mixing is the greatest in our pressure range) to mix 1% of Ca-pv into bridgmanite requires a temperature of 2042 K, 5% 2588 K, 10% 2675 K and 50% 2743 K. Therefore, in a simplified lower mantle chemistry an extensive MgSiO_{3}–CaSiO_{3} solid solution is not expected to occur. However, a simple model was employed to test whether the presence of other elements might influence this mutual solid solution and it was demonstrated that if sufficient concentrations (>1 at.%) of additional elements are present then miscibility may become favourable. Of the elements likely to be present at these concentrations it appears that ferrous iron promotes, whilst aluminium inhibits, a single-phase perovskite solid solution. To a lesser extent ferric iron may both increase and decrease perovskite miscibility. Modelling for realistic mantle compositions suggests that basaltic lithologies will always retain two perovskite components, whereas a single perovskite solid solution may be preferred in hot and/or iron-rich pyrolytic bulk compositions near the base of the lower mantle. Static calculations indicate perovskite miscibility may cause pyrolytic lithologies (with 12.5% CaSiO_{3}) to possess lower density (−0.14–0.25%), V_{s} (−1.5–3.5%) and V_{p} (−0.5–1.2%), and higher V_{Ω} (+ 0.00–0.75%) than predicted for assemblages containing two perovskites. These seismic changes, while preliminary, are similar to those observed in the LLSVPs which are also regions that are likely hotter than the surrounding mantle and thus possess conditions promoting the formation of a single perovskite phase

    Stable isotope evidence for crustal recycling as recorded by superdeep diamonds

    Get PDF
    © 2015 Elsevier B.V. Sub-lithospheric diamonds from the Juina-5 and Collier-4 kimberlites and the Machado River alluvial deposit in Brazil have carbon isotopic compositions that co-vary with the oxygen isotopic compositions of their inclusions, which implies that they formed by a mixing process. The proposed model for this mixing process, based on interaction of slab-derived carbonate melt with reduced (carbide- or metal-bearing) ambient mantle, explains these isotopic observations. It is also consistent with the observed trace element chemistries of diamond inclusions from these localities and with the experimental phase relations of carbonated subducted crust. The 18O-enriched nature of the inclusions demonstrates that they incorporate material from crustal protoliths that previously interacted with seawater, thus confirming the subduction-related origin of superdeep diamonds. These samples also provide direct evidence of an isotopically anomalous reservoir in the deep (≄350 km) mantle

    The phase diagrams of KCaF3 and NaMgF3 by ab initio simulations

    Get PDF
    ABF3 compounds have been found to make valuable low-pressure analogues for high-pressure silicate phases that are present in the Earth’s deep interior and that may also occur in the interiors of exoplanets. The phase diagrams of two of these materials, KCaF3 and NaMgF3, have been investigated in detail by static ab initio computer simulations based on density functional theory. Six ABF3 polymorphs were considered, as follows: the orthorhombic perovskite structure (GdFeO3-type; space group Pbnm); the orthorhombic CaIrO3 structure (Cmcm; commonly referred to as the “post-perovskite” structure); the orthorhombic Sb2S3 and La2S3 structures (both Pmcn); the hexagonal structure previously suggested in computer simulations of NaMgF3 (P63/mmc); the monoclinic structure found to be intermediate between the perovskite and CaIrO3 structures in CaRhO3 (P21/m). Volumetric and axial equations of state of all phases considered are presented. For KCaF3, as expected, the perovskite phase is shown to be the most thermodynamically stable at atmospheric pressure. With increasing pressure, the relative stability of the KCaF3 phases then follows the sequence: perovskite → La2S3 structure → Sb2S3 structure → P63/mmc structure; the CaIrO3 structure is never the most stable form. Above about 2.6 GPa, however, none of the KCaF3 polymorphs are stable with respect to dissociation into KF and CaF2. The possibility that high-pressure KCaF3 polymorphs might exist metastably at 300 K, or might be stabilised by chemical substitution so as to occur within the standard operating range of a multi-anvil press, is briefly discussed. For NaMgF3, the transitions to the high-pressure phases occur at pressures outside the normal range of a multi-anvil press. Two different sequences of transitions had previously been suggested from computer simulations. With increasing pressure, we find that the relative stability of the NaMgF3 phases follows the sequence: perovskite → CaIrO3 structure → Sb2S3 structure → P63/mmc structure. However, only the perovskite and CaIrO3 structures are stable with respect to dissociation into NaF and MgF2

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    Updating known distribution models for forecasting climate change impact on endangered species

    Get PDF
    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli’s Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species’ distribution, instead of building new models that are based on climate change variables only.Ministerio de Ciencia e Innovación and FEDER (project CGL2009-11316/BOS

    Population-based analysis of ocular Chlamydia trachomatis in trachoma-endemic West African communities identifies genomic markers of disease severity.

    Get PDF
    BACKGROUND: Chlamydia trachomatis (Ct) is the most common infectious cause of blindness and bacterial sexually transmitted infection worldwide. Ct strain-specific differences in clinical trachoma suggest that genetic polymorphisms in Ct may contribute to the observed variability in severity of clinical disease. METHODS: Using Ct whole genome sequences obtained directly from conjunctival swabs, we studied Ct genomic diversity and associations between Ct genetic polymorphisms with ocular localization and disease severity in a treatment-naĂŻve trachoma-endemic population in Guinea-Bissau, West Africa. RESULTS: All Ct sequences fall within the T2 ocular clade phylogenetically. This is consistent with the presence of the characteristic deletion in trpA resulting in a truncated non-functional protein and the ocular tyrosine repeat regions present in tarP associated with ocular tissue localization. We have identified 21 Ct non-synonymous single nucleotide polymorphisms (SNPs) associated with ocular localization, including SNPs within pmpD (odds ratio, OR = 4.07, p* = 0.001) and tarP (OR = 0.34, p* = 0.009). Eight synonymous SNPs associated with disease severity were found in yjfH (rlmB) (OR = 0.13, p* = 0.037), CTA0273 (OR = 0.12, p* = 0.027), trmD (OR = 0.12, p* = 0.032), CTA0744 (OR = 0.12, p* = 0.041), glgA (OR = 0.10, p* = 0.026), alaS (OR = 0.10, p* = 0.032), pmpE (OR = 0.08, p* = 0.001) and the intergenic region CTA0744-CTA0745 (OR = 0.13, p* = 0.043). CONCLUSIONS: This study demonstrates the extent of genomic diversity within a naturally circulating population of ocular Ct and is the first to describe novel genomic associations with disease severity. These findings direct investigation of host-pathogen interactions that may be important in ocular Ct pathogenesis and disease transmission

    Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells

    Get PDF
    In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species. © 2013 Povysheva et al

    A visual summary of the EUROCARE-4 results: a UK perspective.

    Get PDF
    BACKGROUND: This paper provides a one-page visual summary of the previously published relative survival estimates for 42 types of cancers in 23 countries in Europe. METHODS: The cancer patients in these analyses were 15 years or older at the time of their diagnosis in the period 1995-1999. Follow-up was to the end of 2003 and relative survival estimates were computed by the cohort method. RESULTS: The analysis of 1-year survival had good discriminatory power and visibly separated a group of countries with consistently high survival estimates (Switzerland, France, Sweden, Belgium and Italy) and another group of countries with lower estimates (Poland, Czech Republic, Ireland, Denmark and United Kingdom-Northern Ireland). After the first year, there was less variation between the countries. CONCLUSION: To more fully understand the UK situation, a rational comparison would select countries with data-quality, prosperity and healthcare systems that are similar to the United Kingdom. In otherwise comparable populations, a pronounced difference in 1-year survival is most likely to be due to variation in a strong prognostic factor, which exerts its effect in the short term. A likely explanation for the short-term survival deficit in the United Kingdom compared with the Nordic countries is a less favourable stage distribution in the United Kingdom. However, the present superficial analysis does not exclude possible functions for other factors relating to the organisation and quality of cancer care services
    • 

    corecore