119 research outputs found

    Conversion of Central Subfield Thickness Measurements of Diabetic Macular Edema Across Cirrus and Spectralis Optical Coherence Tomography Instruments

    Get PDF
    Purpose: Develop equations to convert Cirrus central subfield thickness (CST) to Spectralis CST equivalents and vice versa in eyes with diabetic macular edema (DME). Methods: The DRCR Retina Network Protocol O data were split randomly to train (70% sample) and validate (30% sample) conversion equations. Data from an independent study (CADME) also validated the equations. Bland-Altman 95% limits of agreement between predicted and observed values evaluated the equations. Results: Protocol O included 374 CST scan pairs from 187 eyes (107 participants). The CADME study included 150 scan pairs of 37 eyes (37 participants). Proposed conversion equations are Spectralis = 40.78 + 0.95 × Cirrus and Cirrus = 1.82 + 0.94 × Spectralis regardless of age, sex, or CST. Predicted values were within 10% of observed values in 101 (90%) of Spectralis and 99 (88%) of Cirrus scans in the validation data; and in 136 (91%) of the Spectralis and 148 (99%) of the Cirrus scans in the CADME data. Adjusting for within-eye correlations, 95% of conversions are estimated to be within 17% (95% confidence interval, 14%-21%) of CST on Spectralis and within 22% (95% confidence interval, 18%-28%) of CST on Cirrus. Conclusions: Conversion equations developed in this study allow the harmonization of CST measurements for eyes with DME using a mix of current Cirrus and Spectralis device images. Translational Relevance: The CSTs measured on Cirrus and Spectralis devices are not directly comparable owing to outer boundary segmentation differences. Converting CST values across spectral domain optical coherence tomography instruments should benefit both clinical research and standard care efforts

    Anabolic Therapies

    Get PDF
    The striking clinical benefits of intermittent parathyroid hormone in osteoporosis have begun a new era of skeletal anabolic agents. Recombinant human parathyroid hormone (rhPTH) (1–34) is the first US Food and Drug Administration–approved anabolic therapy. Its use has been limited by the need for subcutaneous injection. Newer delivery systems include transdermal and oral preparations. Newer anabolic therapies include monoclonal antibody to sclerostin, a potent inhibitor of osteoblastogenesis; and use of bone morphogenetic proteins and parathyroid hormone–related protein PTHrP, a calcium-regulating hormone similar to PTH

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Differential Actions of Chlorhexidine on the Cell Wall of Bacillus subtilis and Escherichia coli

    Get PDF
    Chlorhexidine is a chlorinated phenolic disinfectant used commonly in mouthwash for its action against bacteria. However, a comparative study of the action of chlorhexidine on the cell morphology of Gram-positive and Gram-negative bacteria is lacking. In this study, the actions of chlorhexidine on the cell morphology were identified with the aids of electron microscopy. After exposure to chlorhexidine, numerous spots of indentation on the cell wall were found in both Bacillus subtilis and Escherichia coli. The number of indentation spots increased with time of incubation and increasing chlorhexidine concentration. Interestingly, the dented spots found in B. subtilis appeared mainly at the hemispherical caps of the cells, while in E. coli the dented spots were found all over the cells. After being exposed to chlorhexidine for a prolonged period, leakage of cellular contents and subsequent ghost cells were observed, especially from B subtilis. By using 2-D gel/MS-MS analysis, five proteins related to purine nucleoside interconversion and metabolism were preferentially induced in the cell wall of E. coli, while three proteins related to stress response and four others in amino acid biosynthesis were up-regulated in the cell wall materials of B. subtilis. The localized morphological damages together with the biochemical and protein analysis of the chlorhexidine-treated cells suggest that chlorhexidine may act on the differentially distributed lipids in the cell membranes/wall of B. subtilis and E. coli

    SDOCT Imaging to Identify Macular Pathology in Patients Diagnosed with Diabetic Maculopathy by a Digital Photographic Retinal Screening Programme

    Get PDF
    INTRODUCTION: Diabetic macular edema (DME) is an important cause of vision loss. England has a national systematic photographic retinal screening programme to identify patients with diabetic eye disease. Grading retinal photographs according to this national protocol identifies surrogate markers for DME. We audited a care pathway using a spectral-domain optical coherence tomography (SDOCT) clinic to identify macular pathology in this subset of patients. METHODS: A prospective audit was performed of patients referred from screening with mild to moderate non-proliferative diabetic retinopathy (R1) and surrogate markers for diabetic macular edema (M1) attending an SDOCT clinic. The SDOCT images were graded by an ophthalmologist as SDOCT positive, borderline or negative. SDOCT positive patients were referred to the medical retina clinic. SDOCT negative and borderline patients were further reviewed in the SDOCT clinic in 6 months. RESULTS: From a registered screening population of 17 551 patients with diabetes mellitus, 311 patients met the inclusion criteria between (March 2008 and September 2009). We analyzed images from 311 patients' SDOCT clinic episodes. There were 131 SDOCT negative and 12 borderline patients booked for revisit in the OCT clinic. Twenty-four were referred back to photographic screening for a variety of reasons. A total of 144 were referred to ophthalmology with OCT evidence of definite macular pathology requiring review by an ophthalmologist. DISCUSSION: This analysis shows that patients with diabetes, mild to moderate non-proliferative diabetic retinopathy (R1) and evidence of diabetic maculopathy on non-stereoscopic retinal photographs (M1) have a 42.1% chance of having no macular edema on SDOCT imaging as defined by standard OCT definitions of DME when graded by a retinal specialist. SDOCT imaging is a useful adjunct to colour fundus photography in screening for referable diabetic maculopathy in our screening population
    corecore