56 research outputs found

    Solid-state NMR applied to photosynthetic light-harvesting complexes

    Get PDF
    This short review describes how solid-state NMR has provided a mechanistic and electronic picture of pigment–protein and pigment–pigment interactions in photosynthetic antenna complexes. NMR results on purple bacterial antenna complexes show how the packing of the protein and the pigments inside the light-harvesting oligomers induces mutual conformational stress. The protein scaffold produces deformation and electrostatic polarization of the BChl macrocycles and leads to a partial electronic charge transfer between the BChls and their coordinating histidines, which can tune the light-harvesting function. In chlorosome antennae assemblies, the NMR template structure reveals how the chromophores can direct their self-assembly into higher macrostructures which, in turn, tune the light-harvesting properties of the individual molecules by controlling their disorder, structural deformation, and electronic polarization without the need for a protein scaffold. These results pave the way for addressing the next challenge, which is to resolve the functional conformational dynamics of the lhc antennae of oxygenic species that allows them to switch between light-emitting and light-energy dissipating states

    Action Spectroscopy on Dense Samples of Photosynthetic Reaction Centers of Rhodobacter sphaeroides WT Based on Nanosecond Laser-Flash 13C Photo-CIDNP MAS NMR

    Get PDF
    Photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance (photo-CIDNP MAS NMR) allows for the investigation of the electronic structure of the photochemical machinery of photosynthetic reaction centers (RCs) at atomic resolution. For such experiments, either continuous radiation from white xenon lamps or green laser pulses are applied to optically dense samples. In order to explore their optical properties, optically thick samples of isolated and quinone-removed RCs of the purple bacteria of Rhodobacter sphaeroides wild type are studied by nanosecond laser-flash 13C photo-CIDNP MAS NMR using excitation wavelengths between 720 and 940 nm. Action spectra of both the transient nuclear polarization as well as the nuclear hyperpolarization, remaining in the electronic ground state at the end of the photocycle, are obtained. It is shown that the signal intensity is limited by the amount of accessible RCs and that the different mechanisms of the photo-CIDNP production rely on the same photophysical origin, which is the photocycle induced by one single photon

    Skin Cornification Proteins Provide Global Link between ROS Detoxification and Cell Migration during Wound Healing

    Get PDF
    Wound healing is a complex dynamic process characterised by a uniform flow of events in nearly all types of tissue damage, from a small skin scratch to myocardial infarction. Reactive oxygen species (ROS) are essential during the healing process at multiple stages, ranging from the initial signal that instigates the immune response, to the triggering of intracellular redox-dependent signalling pathways and the defence against invading bacteria. Excessive ROS in the wound milieu nevertheless impedes new tissue formation. Here we identify small proline-rich (SPRR) proteins as essential players in this latter process, as they directly link ROS detoxification with cell migration. A literature-based meta-analysis revealed their up-regulation in various forms of tissue injury, ranging from heart infarction and commensal-induced gut responses to nerve regeneration and burn injury. Apparently, SPRR proteins have a far more widespread role in wound healing and tissue remodelling than their established function in skin cornification. It is inferred that SPRR proteins provide injured tissue with an efficient, finely tuneable antioxidant barrier specifically adapted to the tissue involved and the damage inflicted. Their recognition as novel cell protective proteins combining ROS detoxification with cell migration will provide new venues to study and manage tissue repair and wound healing at a molecular level

    Early detection of breast cancer based on gene-expression patterns in peripheral blood cells

    Get PDF
    INTRODUCTION: Existing methods to detect breast cancer in asymptomatic patients have limitations, and there is a need to develop more accurate and convenient methods. In this study, we investigated whether early detection of breast cancer is possible by analyzing gene-expression patterns in peripheral blood cells. METHODS: Using macroarrays and nearest-shrunken-centroid method, we analyzed the expression pattern of 1,368 genes in peripheral blood cells of 24 women with breast cancer and 32 women with no signs of this disease. The results were validated using a standard leave-one-out cross-validation approach. RESULTS: We identified a set of 37 genes that correctly predicted the diagnostic class in at least 82% of the samples. The majority of these genes had a decreased expression in samples from breast cancer patients, and predominantly encoded proteins implicated in ribosome production and translation control. In contrast, the expression of some defense-related genes was increased in samples from breast cancer patients. CONCLUSION: The results show that a blood-based gene-expression test can be developed to detect breast cancer early in asymptomatic patients. Additional studies with a large sample size, from women both with and without the disease, are warranted to confirm or refute this finding

    Evaluation of alternative preservation treatments (water heat treatment, ultrasounds, thermosonication and UV-C radiation) to improve safety and quality of whole tomato

    Get PDF
    Previously optimised postharvest treatments were compared to conventional chlorinated water treatment in terms of their effects on the overall quality of tomato (‘Zinac’) during storage at 10 °C. The treatments in question were water heat treatment (WHT = 40 °C, 30 min), ultrasounds (US = 45 kHz, 80 %, 30 min), thermosonication (TS =40 °C, 30 min, 45 kHz, 80 %) and ultraviolet irradiation (UV-C: 0.97 kJ m−2). The quality factors evaluated were colour, texture, sensorial analysis, mass loss, antioxidant capacity, total phenolic content, peroxidase and pectin methylesterase enzymatic activities, and microbial load reduction. The results demonstrate that all treatments tested preserve tomato quality to some extent during storage at 10 °C. WHT, TS and UV-C proved to be more efficient on minimising colour and texture changes with the additional advantage of microbial load reduction, leading to a shelf life extension when compared to control trials. However, at the end of storage, with exception of WHT samples, the antioxidant activity and phenolic content of treated samples was lower than for control samples. Moreover, sensorial results were well correlated with instrumental colour experimental data. This study presents alternative postharvest technologies that improve tomato (Zinac) quality during shelf life period and minimise the negative impact of conventional chlorinated water on human safety, health and environment.info:eu-repo/semantics/publishedVersio

    Serotonin, genetic variability, behaviour, and psychiatric disorders - a review

    Get PDF
    Brain monoamines, and serotonin in particular, have repeatedly been shown to be linked to different psychiatric conditions such as depression, anxiety, antisocial behaviour, and dependence. Many studies have implicated genetic variability in the genes encoding monoamine oxidase A (MAOA) and the serotonin transporter (5HTT) in modulating susceptibility to these conditions. Paradoxically, the risk variants of these genes have been shown, in vitro, to increase levels of serotonin, although many of the conditions are associated with decreased levels of serotonin. Furthermore, in adult humans, and monkeys with orthologous genetic polymorphisms, there is no observable correlation between these functional genetic variants and the amount or activity of the corresponding proteins in the brain. These seemingly contradictory data might be explained if the association between serotonin and these behavioural and psychiatric conditions were mainly a consequence of events taking place during foetal and neonatal brain development. In this review we explore, based on recent research, the hypothesis that the dual role of serotonin as a neurotransmitter and a neurotrophic factor has a significant impact on behaviour and risk for neuropsychiatric disorders through altered development of limbic neurocircuitry involved in emotional processing, and development of the serotonergic neurons, during early brain development

    Seroprevalence and risk factors of herpes simplex virus type-2 infection among pregnant women in Northeast India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Herpes simplex virus type-2 (HSV-2) is one of the most common sexually transmitted infections that facilitate human immunodeficiency virus (HIV) acquisition by over two fold or more. The development of HSV-2 control methods as a measure to control HIV epidemic in high HSV-2/HIV areas has become a priority. Two out of the six high HIV prevalent states of India are located in the Northeastern region of India. Due to lack of documented HSV-2 studies from this part of the country; there was a need for estimating the seroprevalence and risk factors of HSV-2 infection in this defined population.</p> <p>Methods</p> <p>Pregnant women (n = 1640) aged18 years and above attending antenatal clinics of tertiary referral hospitals in five Northeastern states of India were screened for type specific HSV-2 IgG antibodies. Blood samples were collected from all the participants after conducting interviews. Univariate and multivariate analyses were performed to identify the risk factors associated with HSV-2 seropositivity.</p> <p>Results</p> <p>Overall seroprevalence of HSV-2 infection was 8.7% (142/1640; 95% CI 7.3-10.0) with a highest prevalence of 15.0% (46/307; 95% CI 11.0-19.0) in the state of Arunachal Pradesh. Higher seroprevalence was observed with increasing age (Adj. Odds Ratio [AOR] 1.9 for 22-25 years old, AOR 2.29 for > 29 years old). The risk factors associated with HSV-2 seropositives were multiple sex partners (AOR 2.5, <it>p </it>= 0.04), condom non-user's (AOR 4.7, p <it><</it>0.001), early coitarchal age (age of first intercourse) 'less than 18 years' (AOR 9.6, <it>p = </it>0.04), middle income group (AOR 2.1, <it>p = </it>0.001) compared to low income group and low level of education (AOR 3.7, <it>p = </it>0.02) compared to higher education. HSV-2 seropositivity was higher among Christians (12.6%) compared to Muslims (3.8%). The most frequent clinical symptoms among HSV-2 seropositives were excess vaginal discharge in last one year (53.5%, 76/142) and pelvic pain (26.1%, 37/142). While among subjects with genital ulcers, HSV-2 seroprevalence was 36.8% (7/19).</p> <p>Conclusions</p> <p>Overall seroprevalence of HSV-2 infection among pregnant women of Northeast India is relatively low. The generation of awareness among high risk groups may have played key role to limit the infection. The role of vaccination against HSV-2 in near future and elimination of HSV-2 viral shedding along with genital tract inflammation in high HIV/HSV-2 areas may be an option for initiating successful intervention strategies to reduce the transmission and acquisition of HIV infection in Northeast India.</p

    Methylphenidate Attenuates Limbic Brain Inhibition after Cocaine-Cues Exposure in Cocaine Abusers

    Get PDF
    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and 18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2–5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction

    Restoring brain function after stroke - bridging the gap between animals and humans

    Get PDF
    Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke
    corecore