1,930 research outputs found
Exoplanet phase curves: observations and theory
Phase curves are the best technique to probe the three dimensional structure
of exoplanets' atmospheres. In this chapter we first review current exoplanets
phase curve observations and the particular challenges they face. We then
describe the different physical mechanisms shaping the atmospheric phase curves
of highly irradiated tidally locked exoplanets. Finally, we discuss the
potential for future missions to further advance our understanding of these new
worlds.Comment: Fig.5 has been updated. Table 1 and corresponding figures have been
updated with new values for WASP-103b and WASP-18b. Contains a table
sumarizing phase curve observation
The electric dipole response of Se above 4 MeV
The dipole response of Se in the energy range 4 to 9 MeV has been
analyzed using a polarized photon scattering
technique, performed at the High Intensity -Ray Source facility, to
complement previous work performed using unpolarized photons. The results of
this work offer both an enhanced sensitivity scan of the dipole response and an
unambiguous determination of the parities of the observed J=1 states. The
dipole response is found to be dominated by excitations, and can
reasonably be attributed to a pygmy dipole resonance. Evidence is presented to
suggest that a significant amount of directly unobserved excitation strength is
present in the region, due to unobserved branching transitions in the decays of
resonantly excited states. The dipole response of the region is underestimated
when considering only ground state decay branches. We investigate the electric
dipole response theoretically, performing calculations in a 3D cartesian-basis
time-dependent Skyrme-Hartree-Fock framework.Comment: 20 pages, 18 figures, to be submitted to PR
Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations
It is possible to learn a great deal about exoplanet atmospheres even when we
cannot spatially resolve the planets from their host stars. In this chapter, we
overview the basic techniques used to characterize transiting exoplanets -
transmission spectroscopy, emission and reflection spectroscopy, and full-orbit
phase curve observations. We discuss practical considerations, including
current and future observing facilities and best practices for measuring
precise spectra. We also highlight major observational results on the
chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg
and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure
Segregation of Mn, Si, Al, and oxygen during the friction stir welding of DH36 steel
This work investigates the role of welding speed
in elemental segregation of Mn, Si, Al, and oxygen during
friction stir welding (FSW) in DH36 steel. The experimental
work undertaken showed that when the speed of the
FSW process exceeds 500 RPM with a traverse speed of
400 mm/min, then elemental segregation of Mn, Si, Al,
and O occurred. The mechanism of this segregation is not
fully understood; additionally, the presence of oxygen
within these segregated elements needs investigation. This
work examines the elemental segregation within DH36
steel by conducting heat treatment experiments on unwelded
samples incrementally in the range of 1200–1500 °C
and at cooling rates similar to that in FSW process. The
results of heat treatments were compared with samples
welded under two extremes of weld tool speeds, namely
W1 low tool speeds (200 RPM with traverse speed of
100 mm/min) and W2 high tool speeds (550 RPM with
traverse speed of 400 mm/min). The results from the heat
treatment trials showed that segregation commences when
the temperature exceeds 1400 °C and Mn, Si, Al, and
oxygen segregation progress occurs at 1450 °C and at a
cooling rate associated with acicular ferrite formation. It
was also found that high rotational speeds exceeding
500 RPM caused localized melting at the advancing-trailing
side of the friction stir-welded samples. The study aims
to estimate peak temperature limits at which elemental
segregation does not occur and hence prevent their occurrence
in practice by applying the findings to the tool’s
rotational and traverse speed that correspond to the defined
temperature
Mapping Exoplanets
The varied surfaces and atmospheres of planets make them interesting places
to live, explore, and study from afar. Unfortunately, the great distance to
exoplanets makes it impossible to resolve their disk with current or near-term
technology. It is still possible, however, to deduce spatial inhomogeneities in
exoplanets provided that different regions are visible at different
times---this can be due to rotation, orbital motion, and occultations by a
star, planet, or moon. Astronomers have so far constructed maps of thermal
emission and albedo for short period giant planets. These maps constrain
atmospheric dynamics and cloud patterns in exotic atmospheres. In the future,
exo-cartography could yield surface maps of terrestrial planets, hinting at the
geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17
pages, including 6 figures and 4 pages of reference
Disgust sensitivity is not associated with health in a rural Bangladeshi sample.
Disgust can be considered a psychological arm of the immune system that acts to prevent exposure to infectious agents. High disgust sensitivity is associated with greater behavioral avoidance of disease vectors and thus may reduce infection risk. A cross-sectional survey in rural Bangladesh provided no strong support for this hypothesis. In many species, the expression of pathogen- and predator-avoidance mechanisms is contingent on early life exposure to predators and pathogens. Using childhood health data collected in the 1990s, we examined if adults with more infectious diseases in childhood showed greater adult disgust sensitivity: no support for this association was found. Explanations for these null finding and possible directions for future research are discussed
Exploring pig trade patterns to inform the design of risk-based disease surveillance and control strategies
An understanding of the patterns of animal contact networks provides essential information for the design of risk-based animal disease surveillance and control strategies. This study characterises pig movements throughout England and Wales between 2009 and 2013 with a view to characterising spatial and temporal patterns, network topology and trade communities. Data were extracted from the Animal and Plant Health Agency (APHA)’s RADAR (Rapid Analysis and Detection of Animal-related Risks) database, and analysed using descriptive and network approaches. A total of 61,937,855 pigs were moved through 872,493 movements of batches in England and Wales during the 5-year study period. Results show that the network exhibited scale-free and small-world topologies, indicating the potential for diseases to quickly spread within the pig industry. The findings also provide suggestions for how risk-based surveillance strategies could be optimised in the country by taking account of highly connected holdings, geographical regions and time periods with the greatest number of movements and pigs moved, as these are likely to be at higher risk for disease introduction. This study is also the first attempt to identify trade communities in the country, information which could be used to facilitate the pig trade and maintain disease-free status across the country in the event of an outbreak
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
- …
