78 research outputs found

    Lower bound for the spatial extent of localized modes in photonic-crystal waveguides with small random imperfections

    Get PDF
    Light localization due to random imperfections in periodic media is paramount in photonics research. The group index is known to be a key parameter for localization near photonic band edges, since small group velocities reinforce light interaction with imperfections. Here, we show that the size of the smallest localized mode that is formed at the band edge of a one-dimensional periodic medium is driven instead by the effective photon mass, i.e. the flatness of the dispersion curve. Our theoretical prediction is supported by numerical simulations, which reveal that photonic-crystal waveguides can exhibit surprisingly small localized modes, much smaller than those observed in Bragg stacks thanks to their larger effective photon mass. This possibility is demonstrated experimentally with a photonic-crystal waveguide fabricated without any intentional disorder, for which near-field measurements allow us to distinctly observe a wavelength-scale localized mode despite the smallness (∼1/1000 of a wavelength) of the fabrication imperfections

    Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    Get PDF
    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm

    Wavefront shaping with disorder-engineered metasurfaces

    Get PDF
    Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input–output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input–output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated ~2.2 × 10^8 addressable points in an ~8 mm field of view

    Vacuolar myopathy in a dog resembling human sporadic inclusion body myositis

    Get PDF
    Sporadic inclusion body myositis (sIBM) is the most common myopathy in people over the age of 50 years. While immune-mediated inflammatory myopathies are well documented in dogs, sIBM has not been described. An 11-year-old dog with chronic and progressive neuromuscular dysfunction was evaluated for evidence of sIBM using current pathologic, immunohistochemical and electron microscopic diagnostic criteria. Vacuoles and congophilic intracellular inclusions were identified in cryostat sections of multiple muscle biopsies and immunostained with antibodies against amyloid-β peptide, amyloid-β precursor protein, and proteosome 20S of the ubiquitin–proteosome system. Cellular infiltration and increased expression of MHC Class I antigen were observed. Cytoplasmic filamentous inclusions, membranous structures, and myeloid bodies were identified ultrastructurally. These observations constitute the first evidence that both the inflammatory and degenerative features of human sIBM can occur in a non-human species

    Relationships of APOE genotypes with small RNA and protein cargo of brain tissue extracellular vesicles from patients with late-stage AD

    Get PDF
    Background and Objectives Variants of the apolipoprotein E (APOE) gene are the greatest known risk factors for sporadic Alzheimer disease (AD). Three major APOE isoform alleles, ϵ2, ϵ3, and ϵ4, encode and produce proteins that differ by only 1-2 amino acids but have different binding partner interactions. Whereas APOE ϵ2 is protective against AD relative to ϵ3, ϵ4 is associated with an increased risk for AD development. However, the role of APOE in gene regulation in AD pathogenesis has remained largely undetermined. Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells to dispose of unwanted materials and mediate intercellular communication, and they are implicated in AD pathophysiology. Brain-derived EVs (bdEVs) could act locally in the tissue and reflect cellular changes. To reveal whether APOE genotype affects EV components in AD brains, bdEVs were separated from patients with AD with different APOE genotypes for parallel small RNA and protein profile. Methods bdEVs from late-stage AD brains (BRAAK stages 5-6) from patients with APOE genotypes ϵ2/3 (n = 5), ϵ3/3 (n = 5), ϵ3/4 (n = 6), and ϵ4/4 (n = 6) were separated using our published protocol into a 10,000g pelleted extracellular fraction (10K) and a further purified EV fraction. Counting, sizing, and multiomic characterization by small RNA sequencing and proteomic analysis were performed for 10K, EVs, and source tissue. Results Comparing APOE genotypes, no significant differences in bdEV total particle concentration or morphology were observed. Overall small RNA and protein profiles of 10K, EVs, and source tissue also did not differ substantially between different APOE genotypes. However, several differences in individual RNAs (including miRNAs and tRNAs) and proteins in 10K and EVs were observed when comparing the highest and lowest risk groups (ϵ4/4 and ϵ2/3). Bioinformatic analysis and previous publications indicate a potential regulatory role of these molecules in AD. Discussion For patients with late-stage AD in this study, only a few moderate differences were observed for small RNA and protein profiles between APOE genotypes. Among these, several newly identified 10K and EV-associated molecules may play roles in AD progression. Possibly, larger genotype-related differences exist and are more apparent in or before earlier disease stages

    Foreign ownership, bank information environments, and the international mobility of corporate governance

    Get PDF
    This paper investigates how foreign ownership shapes bank information environments. Using a sample of listed banks from 60 countries over 1997–2012, we show that foreign ownership is significantly associated with greater (lower) informativeness (synchronicity) in bank stock prices. We also find that stock returns of foreign-owned banks reflect more information about future earnings. In addition, the positive association between price informativeness and foreign ownership is stronger for foreign-owned banks in countries with stronger governance, stronger banking supervision, and lower monitoring costs. Overall, our evidence suggests that foreign ownership reduces bank opacity by exporting governance, yielding important implications for regulators and governments
    corecore