1,918 research outputs found

    Quantile forecast discrimination ability and value

    Get PDF
    While probabilistic forecast verification for categorical forecasts is well established, some of the existing concepts and methods have not found their equivalent for the case of continuous variables. New tools dedicated to the assessment of forecast discrimination ability and forecast value are introduced here, based on quantile forecasts being the base product for the continuous case (hence in a nonparametric framework). The relative user characteristic (RUC) curve and the quantile value plot allow analysing the performance of a forecast for a specific user in a decision-making framework. The RUC curve is designed as a user-based discrimination tool and the quantile value plot translates forecast discrimination ability in terms of economic value. The relationship between the overall value of a quantile forecast and the respective quantile skill score is also discussed. The application of these new verification approaches and tools is illustrated based on synthetic datasets, as well as for the case of global radiation forecasts from the high resolution ensemble COSMO-DE-EPS of the German Weather Service

    Cellular localization and associations of the major lipolytic proteins in human skeletal muscle at rest and during exercise

    Get PDF
    Lipolysis involves the sequential breakdown of fatty acids from triacylglycerol and is increased during energy stress such as exercise. Adipose triglyceride lipase (ATGL) is a key regulator of skeletal muscle lipolysis and perilipin (PLIN) 5 is postulated to be an important regulator of ATGL action of muscle lipolysis. Hence, we hypothesized that non-genomic regulation such as cellular localization and the interaction of these key proteins modulate muscle lipolysis during exercise. PLIN5, ATGL and CGI-58 were highly (>60%) colocated with Oil Red O (ORO) stained lipid droplets. PLIN5 was significantly colocated with ATGL, mitochondria and CGI-58, indicating a close association between the key lipolytic effectors in resting skeletal muscle. The colocation of the lipolytic proteins, their independent association with ORO and the PLIN5/ORO colocation were not altered after 60 min of moderate intensity exercise. Further experiments in cultured human myocytes showed that PLIN5 colocation with ORO or mitochondria is unaffected by pharmacological activation of lipolytic pathways. Together, these data suggest that the major lipolytic proteins are highly expressed at the lipid droplet and colocate in resting skeletal muscle, that their localization and interactions appear to remain unchanged during prolonged exercise, and, accordingly, that other post-translational mechanisms are likely regulators of skeletal muscle lipolysis

    Aiding the design of radiation resistant materials with multiphysics simulations of damage processes

    No full text
    The design of metals and alloys resistant to radiation damage involves the physics of electronic excitations and the creation of defects and microstructure. During irradiation damage of metals by high energy particles, energy is exchanged between ions and electrons. Such non-adiabatic processes violate the Born-Oppenheimer approximation, on which all conservative classical interatomic potentials rest. By treating the electrons of a metal explicitly and quantum mechanically we are able to explore the influence of electronic excitations on the ionic motion during irradiation damage. Simple theories suggest that moving ions should feel a damping force proportional to their velocity and directly opposed to it. In contrast, our simulations of a forced oscillating ion have revealed the full complexity of this force: in reality it is anisotropic and dependent on the ion velocity and local atomic environment. A large set of collision cascade simulations has allowed us to explore the form of the damping force further. We have a means of testing various schemes in the literature for incorporating such a force within molecular dynamics (MD) against our semi-classical evolution with explicitly modelled electrons. We find that a model in which the damping force is dependent upon the local electron density is superior to a simple fixed damping model. We also find that applying a lower kinetic energy cut-off for the damping force results in a worse model. A detailed examination of the nature of the forces reveals that there is much scope for further improving the electronic force models within MD. © 2010 Materials Research Society.Accepted versio

    Hidden Orbital Order in URu2Si2URu_{2}Si_{2}

    Full text link
    When matter is cooled from high temperatures, collective instabilities develop amongst its constituent particles that lead to new kinds of order. An anomaly in the specific heat is a classic signature of this phenomenon. Usually the associated order is easily identified, but sometimes its nature remains elusive. The heavy fermion metal URu2Si2URu_2Si_2 is one such example, where the order responsible for the sharp specific heat anomaly at T0=17KT_0=17 K has remained unidentified despite more than seventeen years of effort. In URu2Si2URu_{2}Si_{2}, the coexistence of large electron-electron repulsion and antiferromagnetic fluctuations in URu2Si2URu_2Si_2 leads to an almost incompressible heavy electron fluid, where anisotropically paired quasiparticle states are energetically favored. In this paper we use these insights to develop a detailed proposal for the hidden order in URu2Si2URu_2Si_2. We show that incommensurate orbital antiferromagnetism, associated with circulating currents between the uranium ions, can account for the local fields and entropy loss observed at the 17K17 K transition; furthermore we make detailed predictions for neutron scattering measurements

    A Complete Pipeline for Heart Rate Extraction from Infant ECGs

    Get PDF
    \ua9 2024 by the authors.Infant electrocardiograms (ECGs) and heart rates (HRs) are very useful biosignals for psychological research and clinical work, but can be hard to analyse properly, particularly longform (≥5 min) recordings taken in naturalistic environments. Infant HRs are typically much faster than adult HRs, and so some of the underlying frequency assumptions made about adult ECGs may not hold for infants. However, the bulk of publicly available ECG approaches focus on adult data. Here, existing open source ECG approaches are tested on infant datasets. The best-performing open source method is then modified to maximise its performance on infant data (e.g., including a 15 Hz high-pass filter, adding local peak correction). The HR signal is then subsequently analysed, developing an approach for cleaning data with separate sets of parameters for the analysis of cleaner and noisier HRs. A Signal Quality Index (SQI) for HR is also developed, providing insights into where a signal is recoverable and where it is not, allowing for more confidence in the analysis performed on naturalistic recordings. The tools developed and reported in this paper provide a base for the future analysis of infant ECGs and related biophysical characteristics. Of particular importance, the proposed solutions outlined here can be efficiently applied to real-world, large datasets

    A low balance between microparticles expressing tissue factor pathway inhibitor and tissue factor is associated with thrombosis in Behçet’s Syndrome

    Get PDF
    Thrombosis is common in Behçet’s Syndrome (BS), and there is a need for better biomarkers for risk assessment. As microparticles expressing Tissue Factor (TF) can contribute to thrombosis in preclinical models, we investigated whether plasma microparticles expressing Tissue Factor (TF) are increased in BS. We compared blood plasma from 72 healthy controls with that from 88 BS patients (21 with a history of thrombosis (Th+) and 67 without (Th−). Using flow cytometry, we found that the total plasma MP numbers were increased in BS compared to HC, as were MPs expressing TF and Tissue Factor Pathway Inhibitor (TFPI) (all p 0.7 had a history of clinical thrombosis. We conclude that TF-expressing MP are increased in BS and that an imbalance between microparticulate TF and TFPI may predispose to thrombosis
    • …
    corecore