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While probabilistic forecast verification for categorical forecasts is well established,
some of the existing concepts and methods have not found their equivalent for the case of
continuous variables. New tools dedicated to the assessment of forecast discrimination
ability and forecast value are introduced here, based on quantile forecasts being the base
product for the continuous case. The relative user characteristic (RUC) curve and the
quantile value plot allow analysing the performance of a forecast for a specific user in a
decision-making framework. The RUC curve is designed as a user-based discrimination
tool and the quantile value plot translates forecast discrimination ability in terms of
economic value. The relationship between the overall value of a quantile forecast and the
respective quantile skill score is also discussed. The application of these new verification
approaches and tools is illustrated based on synthetic datasets, as well as for the case
of global radiation forecasts from the high resolution ensemble COSMO-DE-EPS of the
German Weather Service.
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1. Introduction

Verification of probabilistic weather forecasts is an area of
intensive research and growing interest as ensemble forecasting is
becoming a standard approach in numerical weather prediction.
Ensemble prediction systems (EPS) issue a sample of possible
future states of the atmosphere (Lewis 2005; Leutbecher and
Palmer 2008). The forecasts can be interpreted in the form of a
predictive distribution and probabilistic products can be derived
in order to support and optimize forecast-based decision-making
(Krzysztofowicz 1983). Appropriate tools for the assessment of
probabilistic products from this perspective are therefore essential.

Such tools already exist for probabilistic products expressed
in the form a probability forecast for a defined event. The
relative operating characteristic (ROC) curve is a common
verification tool for the assessment of probability forecasts
(Mason 1982). The ROC curve is related to decision-making
analysis and the corresponding fundamental property of the
forecast is called discrimination. Forecast discrimination assesses
whether the forecast can be used to successfully discriminate
between the observations (Murphy 1991) or, said differently,
whether appropriate decisions can be taken based on a forecast.
Discrimination is translated in terms of economic value using
a simple cost-loss model that allows the specificity of a user
to be taken into account through the definition of a cost-loss
ratio. The derived quantitative measure is called value score
or relative value and is usually represented in the form of a
probability value plot showing the forecast value as a function

of the user’s cost-loss ratio (Richardson 2000; Wilks 2001; Zhu
et al. 2002). The value of a forecast is defined as the benefit to a
user as a result of making decisions based on a forecast and has
to be distinguished from forecast quality, the overall agreement
between forecast and observation (Murphy 1993). In a verification
process, value and quality can be seen as being from the point
of view of the forecast user and from the point of view of the
forecast provider, respectively. The distinction between the two
types of goodness, value and quality, is crucial since a non-linear
relationship between them can lead to situations where a large
improvement in the forecast quality does not imply an increase in
the forecast value, or conversely, a small improvement in forecast
quality can bring a notable benefit in terms of forecast value (Chen
et al. 1987; Buizza 2001; Pinson 2013).

Probabilistic products can be expressed in terms of a probability
when the focus is on a particular event of interest, but also in terms
of a quantile when the focus is on a particular probability level of
interest. While a probability forecast first requires the definition
of an event, i.e. the categorization of the original information,
a quantile forecast is a ’single-valued’ forecast expressed in the
unit of the variable being forecast. Considering here probabilistic
products derived from EPS simulations for continuous variables,
such as temperature, wind speed or global radiation, quantile
forecasts of the predictive distributions allow one to work with
a continuous forecast as the original one by defining a nominal
probability level. The choice of a probability level is directly
related to the user’s loss function: a quantile forecast at a given
probability level is the optimal forecast for users with a specific
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asymmetry in their loss function (Koenker and Machado 1999;
Friederichs and Hense 2007; Gneiting 2011a). Asymmetric loss
functions find numerous real-world applications, in particular in
the renewable energy sector (Pinson et al. 2007; Pinson 2013).
For example, consider solar energy producers who have to agree
in advance about the amount of energy to be provided to their
customer. If too much energy is produced, they will sell the extra
at a reduced price, while if they do not produce enough energy
they will be heavily penalised. The asymmetry in the producer’s
loss function is drawn from the different penalties associated to
over- and under-forecasting.

Based on the relationship between user’s loss function and
quantile forecast level, the quantile score (QS) is the natural
scoring rule for assessing the quality of quantile forecasts
(Koenker and Machado 1999; Friederichs and Hense 2007;
Gneiting 2011a). More recently, the verification of quantile
forecasts has benefited from the tradition and concepts stemming
from the probability forecast verification framework. It has been
shown that QS is a proper scoring rule and a decomposition of
the score has been proposed (Bentzien and Friederichs 2014).
The QS decomposition provides information about reliability and
resolution, two other fundamental attributes of a probabilistic
forecast (Toth et al. 2003).

The aim of the paper at hand is to extend the range of
verification methods dedicated to the assessment of quantile
forecasts. In particular, the assessment of quantile forecasts
from the user’s perspective, in a decision-making framework, is
explored here. Based on a simple cost-loss model, the concepts of
forecast discrimination and forecast value are revisited focusing
on a specific user rather than on an specific event. First, a new
tool is proposed for the analysis of user-based discrimination.
The so-called relative user characteristic (RUC) curve and the
associated summary measure are shown to be adequate for the
assessment of quantile forecast discrimination ability. Secondly,
quantile forecast value is discussed as an application of the value
score to quantile forecasts. The quantile value plot, showing the
economic value of a forecast as a function of a range of events of
interest, is proposed as a new tool for the visualization of quantile
forecast performance. Finally, the relationship between quantile
forecast value and quantile skill score is discussed in the same
vein as the relationship between probability forecast value and
Brier skill score (Murphy 1969). The concepts developed are first
illustrated with the help of synthetic datasets and in a second step
applied to probabilistic forecasts derived from an EPS.

The manuscript is organized as follows: Section 2 describes
the datasets that are used to illustrate the discussion. Section 3
introduces definitions and notations and describes the relationship
between quantile forecast and forecast user within a cost-
loss model framework. Section 4 discusses the concept of
discrimination and Section 5 the application of the economic value
score to quantile forecasts. Section 6 presents the conclusions.

2. Data

2.1. Synthetic datasets

In order to illustrate the concepts discussed hereafter, we make use
of synthetic and real datasets. The synthetic data are derived from
a toy-model based on normal distributions often used to illustrate
verification discussions (e.g. Hamill 2001; Weigel 2011). The toy-
model is kept simple in order to facilitate the interpretation of the
results.

We consider a signal s, normally distributed, written s ∼
N (0, 1). We assume that the observations are randomly drawn
from a distribution N (s, 1) and the associated predictive distribu-
tion described by N (s+ β, σ) where β is the unconditional bias

parameter and σ the dispersion parameter. We define the following
test-cases:

A0 : β = 0, σ = 1 (a perfect probabilistic forecast) ,
A1 : β = −0.75, σ = 1 (a biased forecast),
A2 : β = 0, σ = 1/3 (an underdispersive forecast),
B : β = εB , σ = 1 (a forecast with white noise),

where εB is derived from a uniform distribution defined on [−5, 5].
The first three datasets A0, A1 and A2 differ only in terms of
biases while the fourth dataset B corresponds to a forecast with
a dynamically disturbed signal. The simulation setup, the values
associated to β, σ and εB , has been chosen in order to make clear
the reading of the Figures in Section 4 and 5 but does not affect
the general interpretation of the simulation results.

2.2. COSMO-DE-EPS

Real datasets are provided by COSMO-DE-EPS, a regional
ensemble prediction system run operationally at Deutscher
Wetterdienst, Offenbach, Germany. The ensemble system is based
on a 2.8 km grid resolution version of the COSMO model
(Steppeler et al. 2003; Baldauf et al. 2011) with a model domain
that covers Germany and parts of the neighbouring countries. The
ensemble comprises 20 members including variations in initial
conditions, physics parameterisations and boundary conditions
(Gebhardt et al. 2011; Peralta et al. 2012).

COSMO-DE-EPS has been first developed focusing on high-
impact weather events (Ben Bouallègue et al. 2013; Ben
Bouallègue and Theis 2014) and is planned to be used for energy-
applications. The focus in this paper is on global radiation (the
sum of direct and diffuse shortwave radiations) which is the main
weather variable affecting solar energy forecasts. Verification is
applied to the 0300UTC run with a forecast horizon ranging
between 5 and 15 hours. Two periods of 3 months are compared:
winter (December, January, February) 2012/2013 and summer
(June, July, August) 2013. The observation dataset consists of
pyranometer measurements from 32 stations distributed over
Germany and quality controlled (Becker and Behrens 2012).

Global radiation forecasts and observations are transformed
into clearness index before verification. The clearness index is
defined as the ratio between global radiation at ground and
global radiation at the top of the atmosphere (Badescu 2008).
This pre-processing of the data allows climatological effects and
misinterpretation of the verification results to be avoided (Hamill
and Juras 2006).

3. Definitions and framework

3.1. Quantile forecast, quantile score, and quantile skill score

We first consider the quantity to be forecast (or observation) Ω ∈
< that we assume to be a continuous random variable driven by a
stochastic process. An observed event E is defined by a threshold
ω as E : Ω ≥ ω. The base rate π of an event E (or climatological
frequency) corresponds to:

π = Pr(Ω ≥ ω). (1)

Consider now a predictive cumulative distribution F (x). The
probability forecast pω of event E is defined as:

pω = 1− F (ω). (2)

The quantile forecast qτ at probability level τ (0 ≤ τ ≤ 1) is
defined as:

qτ := F−1(τ) = inf{x : F (x) ≥ τ} (3)

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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such that the relationship between a probability forecast and a
quantile forecast is expressed as:

pqτ = 1− τ. (4)

Figure 1 shows an example of a cumulative distribution function
F (x). A threshold ω and the associated probability forecast 1−
pω as well as a probability level τ and the associated quantile
forecast qτ are shown on the plot.

The quantile score (QS) is the scoring rule applied in order
to assess the quality of a quantile forecast. QS is based on
an asymmetric piecewise linear function ρτ called the check
function. The check function was first defined in the context of
quantile regression (Koenker and Bassett 1978):

ρτ (u) = u[τ − I(u < 0)] =

{
τu if u ≥ 0

(τ − 1)u if u < 0
(5)

where I(.) is an indicator function having value 1 if the condition
in parenthesis is true and zero otherwise. QS results from the
mean of the check function applied to the pairs i = 1, ..., N of
observation Ωi and quantile forecast qτ,i following

QS =
1

N

N∑
i=1

ρτ (Ωi − qτ,i), (6)

where N is the size of the verification sample. Developing Eq. (6)
we can write

QS =
1− τ
N

∑
i:Ωi<qτ,i

(qτ,i − Ωi) +
τ

N

∑
i:Ωi≥qτ,i

(Ωi − qτ,i) (7)

The scoring rule consists of penalties 1− τ and τ per unit
of Ω associated with under-forecasting and over-forecasting,
respectively.

Skill scores are computed in order to measure the relative
benefit of using a forecast compared to a reference forecast
(Wilks 2006). The quantile skill score (QSS) measures the skill
of a quantile forecast compared to a reference quantile forecast.
Considering the climatology as reference, QSS corresponds to:

QSS =
QSforecast −QSclimate

QSperfect −QSclimate
= 1− QSforecast

QSclimate
(8)

where QSforecast, QSperfect and QSclimate represent the quantile
scores of the forecast under assessment, of a perfect deterministic
forecast and of a climatological τ -quantile forecast, respectively.
QSperfect, by definition, equals 0 and a climatological τ -quantile
forecast, noted Ωτ , is here defined as the τ -quantile of the
observation distribution over the verification sample. Using the
sample climatology for the reference forecasts, one should be
aware, interpreting the results, that it produces a disadvantage for
the forecasts, especially as the sample size is relatively small.

3.2. Cost-loss model and optimal decision-making

The framework used to discuss the concept of user and decision-
making is based on a static cost-loss model (Thompson 1962; Katz
and Murphy 1997). The cost-loss model describes situations of
dichotomous decisions: a user has to decide whether or not to take
protective action against potential occurrence of an event E. The
decision is made based on a decision variable (or forecast) Λ. A
decision criterion λ applied to the decision variable defines an
action A : Λ ≥ λ. Taking action implies a cost C. In the case of
occurrence of the event E without preventive action, a loss L is
encountered. The cost-loss ratio is denoted α:

α =
C

L
. (9)

x

F
(x

)

0
1

−
p

ω
τ

1

ω q
τ

Figure 1. Example of a predictive cumulative distribution function F (x).
Probabilistic products are derived either fixing a threshold ω and deriving the
associated probability forecast pω , or fixing a probability level τ and deriving the
associated quantile forecast qτ .

A user with cost-loss ratio α is called hereafter an α-user. Based
on this simple model the optimal decision strategy of an α-user
can be discussed (e.g. Richardson 2011). The problem consists of
finding, for a decision variable Λ, the critical decision criterion λα
that minimizes the α-user mean expense if actions are taken when
Λ ≥ λα.

Consider first the case of a probability forecast pω as a decision
variable. Based on pω , does the user have to take action or not? In
order to answer this question, the average expenses in the cases of
positive and negative answers are compared. If the answer is yes,
the user encounters a cost C on every occasion, so the average
expense Ēyes is simply

Ēyes = C. (10)

If the answer is no, the user has no cost but a loss L on each
occasion where the event occurs, so on average the user’s expense
Ēno is

Ēno = LPr(Ω ≥ ω | pω), (11)

where Pr(Ω ≥ ω | pω) is the probability that the event occurs
when the probability forecast pω is issued. So, users with a
cost-loss ratio α < Pr(Ω ≥ ω | pω) should take preventive action,
while users with a greater cost-loss ratio should not. The critical
decision criterion p?ω associated with the decision variable pω is
thus defined as

p?ω = {pω |Pr(Ω ≥ ω | pω) = α}. (12)

Thus, the action based on the probability forecast A : pω ≥ p?ω
optimizes the user’s mean expense in the long term.

If the forecast is reliable, we have by definition Pr(Ω ≥ ω |
pω) = pω: the event actually happens with an observed relative
frequency consistent with the forecast probability (Bröcker 2009).
The optimal decision is then to take action if

pω ≥ α. (13)

When the probability forecast is compared to the cost-loss ratio in
order to decide whether or not to take action (without additional
information about forecast reliability), we say that the probability
forecast is taken at face value. For example, consider users
who have to decide whether or not to take preventive action
against precipitation occurrence. If the forecast probability of
precipitation is 10%, users with cost-loss ratio lower than 10%
take action. If the forecast is not reliable, the critical decision
criterion is no longer α but has to be adjusted following Eq. (12).
Statistical adjustments of the forecast based on past data is usually
referred as forecast calibration (e.g. Gneiting et al. 2007).
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Figure 2. (a) Cost (dashed line) as a function of the level of protection x and loss
(full line) as a function of the observation Ω. An observation Ωi is represented by a
vertical line. (b) Expense as a function of the difference between the observation Ωi
and the level of protection x. The horizontal line indicates the expense for a perfect
level of protection.

Consider now a quantile forecast qτ as a decision variable. We
apply the same reasoning as for a probability forecast. The critical
decision criterion q?τ associated with qτ is defined as

q?τ = {qτ | Pr(Ω ≥ ω | qτ ) = α} (14)

such that taking action when qτ ≥ q?τ minimizes the user mean
expense. By definition, a quantile forecast is reliable if it satisfies

Pr(Ω ≥ ω | qτ = ω) = 1− τ, (15)

i.e. the observed relative frequency of the event defined by
the quantile forecast is consistent with the quantile forecast
probability level. Eq. (14) has a straightforward solution

q?τ = ω (16)

when the decision variable is the quantile forecast at probability
level τ defined as

τ = 1− α. (17)

Taking action when qτ ≥ ω with τ = 1− α is equivalent to taking
action when pω ≥ α since the cumulative probability distribution
function F (x) is by definition monotonically increasing (see e.g.
Figure 1). Hence, a quantile forecast is taken at face value when
the user’s decision is made based on the comparison of the forecast
with the event threshold ω. In our example, if the 90%-quantile
forecast of precipitation is greater than zero, a user with cost-loss
ratio α = 1− 0.9 = 0.1 takes preventive action.

In a general form, the critical decision criterion λα for an α-
user is defined by

λα = {λ | Pr(Ω ≥ ω | λ) = α} (18)

where the decision variable could equally be the probability
forecast pω or the quantile forecast qτ with τ = 1− α. Provided
that the forecasts are reliable, the critical decision criteria are
known and have a simple expression (Eqs (13,16)). In the
following, we say that the decision variable is taken at face value
when the user applies the decision criterion valid for a reliable
forecast, irrespective of whether the forecast is actually reliable or
not.

3.3. Quantile forecast user

The dichotomous decision problem is extended to a continuous
decision problem considering the cost C and the loss L as unitary
cost and unitary loss, respectively (Epstein 1969; Roulston et al.
2003). The cost of taking protection is a linear function of the level
of protection x and the loss without protection is a linear function

of the observation Ω, as illustrated in Figure 2. The optimization
problem consists of finding the level of protection that minimizes
the expected user expense.

Considering a variable defined on <+ (the generalization to
variables defined on < is straightforward), the expense associated
with a level of protection x corresponds to Cx. If the observation
is Ω, then protection is perfect if x = Ω. But if x > Ω, then there
is an unnecessary expense due to a larger level of protection than
is actually needed. If the observation Ω is greater than the level
of protection, then a loss L(Ω− x) is encountered and a cost
C(Ω− x) avoided. Formally, we can write the expense function
E as

E =

{
C(x− Ω) if Ω < x

(L− C)(Ω− x) if Ω ≥ x.
(19)

The expense function is represented in Figure 2. If divided by L,
the expense function is an asymmetric loss function equivalent
to the check function defined in Eq. (5), where the asymmetry
is given by τ = L−C

L . Thus the optimal level of protection x?

which minimizes the user’s mean expense corresponds to the
1− α quantile of the true predictive distribution of Ω.

This result is not new: quantile forecasts arise as an optimal
solution for users with an asymmetric linear loss function
(Koenker and Bassett 1978; Christoffersen and Diebold 1997).
More recently, it has been shown that quantile forecasts are
optimal forecasts in a stochastic optimization framework for a
more general class of loss functions (Gneiting 2011b).

Asymmetric loss functions find a number of applications, in
particular for operational decision-making problems related to the
integration of renewable energies into the electricity grid. For
example, asymmetric loss functions can be associated with market
participants who want to optimize their bids or system operators
who have to optimize their reserves. The different penalties
associated to over- or under-forecasting draw the asymmetry in
the user’s loss function. The user’s optimal forecast corresponds
then to a specific quantile of the predictive distribution where the
probability is defined by the user’s cost-loss ratio (Pinson et al.
2007; Pinson 2013).

4. Discrimination

Based on the discussion developed in the previous Section,
continuous decision making is seen in the following as a
continuum of dichotomous decisions. For each threshold ω of the
event spectrum, the question is whether to take action for the next
unit of the variable. The adequate decision for a user in order to
minimize the expected expense is a function of his (her) cost-loss
ratio as defined in Eq. (18). Moreover, the relationship between
cost-loss ratio and quantile probability level, τ = 1− α, makes
implicit the cost-loss ratio α of a user as soon as the level τ of the
quantile forecast used as decision variable is selected.

4.1. General verification framework

A general framework for forecast verification is based on the
joint distribution of forecasts and observations (Murphy and
Winkler 1987). The overall agreement between forecasts and
observations is called quality and is measured by scoring rules,
like QS for quantile forecasts. In order to access more information
about the forecast performance, two factorizations of the joint
distribution, into conditional and marginal distributions, can
be applied: the calibration-refinement (CR) factorization when
conditioning on the forecasts and the likelihood-base rate (LBR)
factorization when conditioning on the observations. Summary
measures based on these two factorizations are associated with
attributes, fundamental characteristics of the forecast. Reliability
and resolution are derived from the CR factorization while

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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discrimination is derived from the LBR factorization (Murphy and
Winkler 1992).

Here the focus is on discrimination, the key forecast
attribute for decision-making processes. A general definition of
discrimination is ”the ability of a forecasting system to produce
different forecasts for those occasions having different realized
outcomes” (Wilks 2006). Discrimination assumes calibration of
a forecast and so does not account for reliability discrepancies.
Though biases can strongly affect the skill of a forecast, this can
be seen as an advantage since reliability, unlike discrimination,
can be improved by recalibration. Investigating discrimination of
a forecast means therefore focusing on the necessary condition for
skill (Jolliffe and Stephenson 2005).

Discrimination assessment is here discussed in terms of
event and action within the dichotomous decision framework.
Regarding the LBR factorization, it is common practice to analyse
discrimination in terms of hit rateH and false alarm rate F defined
as

H = Pr(Λ ≥ λ | Ω ≥ ω) (20)

and
F = Pr(Λ ≥ λ | Ω < ω), (21)

respectively. Actions A : Λ ≥ λ and events E : Ω ≥ ω are
dichotomous, each presenting two alternatives, so H and F can be
easily derived from the construction of a 2× 2 contingency table.
No discrimination corresponds to the case where:

H = F (22)

for all λ ∈ Λ and ω ∈ Ω, meaning that actions and event
occurrence are independent (Bröcker 2014).

4.2. Event-based discrimination

We first focus on one particular event defined by a threshold ω,
with event-specific hit rate Hλ and false alarm rate Fλ. A popular
way to assess discrimination (Eq. (22)) is to plot the set of points
(Fλ, Hλ) for a range of actions with λ ∈ Λ. The resulting curve is
known as the relative operating characteristic (ROC) curve. When
action and event occurrence are independent, the ROC curve is
a diagonal line. Concavity of the curve indicates a discrimination
ability in the forecast and the area under the curve (AUC) becomes
a quantitative measure of forecast discrimination (Mason 1982).
Figure 3 (a) shows an example of a ROC curve for the synthetic
dataset A0. The event of interest is E : Ω ≥ 0 with a base rate
π = Pr(Ω ≥ 0) of 0.5. The respective probability forecast p0 =

1− F (0), the probability that simulation A0 exceeds 0, is used as
decision variable.

The interpretation of the ROC curve can be related to the
dichotomous decision model described in Section 3.2 as discussed
for example in Richardson (2011). In order to describe this
relationship, we consider the slope of the ROC curve, defining first
the gradient of a line joining two successive ROC points (Fλ, Hλ)
and (Fλ+∆λ, Hλ+∆λ):

Hλ −Hλ+∆λ

Fλ − Fλ+∆λ
=
Pr(Λ ≥ λ | Ω ≥ ω)− Pr(Λ ≥ λ+ ∆λ | Ω ≥ ω)

Pr(Λ ≥ λ | Ω < ω)− Pr(Λ ≥ λ+ ∆λ | Ω < ω)
.

(23)
The slope of the curve γ is obtained when ∆λ tends to 0:

γ(λ, ω) =
Pr(Λ = λ | Ω ≥ ω)

Pr(Λ = λ | Ω < ω)
(24)

where the ratio is also know as the likelihood ratio (Bröcker 2011).
Using the Bayes rule and the definition of the critical decision
criterion of an α-user in Eq. (18), we can write

γ(λα, ω) =
1− π
π

α

1− α (25)
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Figure 3. Discrimination curves for decision variables from the synthetic dataset
A0. The diagonal lines are the no discrimination lines. The points correspond to
the (F ,H) pair for the event Ω ≥ 0 and the action associated with the 50%-users.
(a) ROC curve of the probability forecast p0 for the event E : Ω ≥ 0, with base
rate π = 0.5, and equi-cost lines (in grey) of slope γ = 1. (b) RUC curve of the
quantile forecast q0.5 for the user with cost-loss ratio α = 0.5.

where π = Pr(Ω ≥ ω) is the base rate of an event E : Ω ≥ ω and
λα the corresponding critical decision criterion of an α-user.

The range of decision criterion λ used to derive the ROC
curve (Fλ, Hλ) corresponds to a range of critical decision criteria
associated with users with different cost-loss ratios. Each point of
the ROC curve is associated with a specific α-user that is identified
by the slope of the curve at that point. The slope possibly ranges
between 0 and +∞ at the right-top and the bottom-left corners of
the ROC plot respectively. Moving along the curve from the top to
the bottom consists in varying the cost-loss ratio α between 0 and
1.

For example, consider a user with a cost-loss ratio α = 50%.
In Figure 3, the point of the ROC curve with slope γ = 1 is
highlighted (α = 0.5, π = 0.5 in Eq. (25)). This point indicates the
performance of the forecast in terms ofH and F for this particular
user. Conversely, the decision criterion applied to obtain this point
corresponds to the critical decision criterion for the 50%-user.

The ROC curve applied to a decision variable, then,
corresponds to testing whether actions and event occurrence are
independent for one event and a range of users with different cost-
loss ratios. The ROC curve is an event specific but user unspecific
discrimination tool and is therefore well-adapted to probability
forecast discrimination assessment.

4.3. User-based discrimination

We focus now on a user with cost-loss ratio α. The critical
decision criterion λα defines the action of this specific user with
respect to an event. We define then the user-specific hit rate Hω
and false alarm rate Fω as in Eqs (20) and (21) for a fixed α.
In order to test Eq. (22), the set of points (Fω, Hω) are plotted
for a range of events. We call the resulting curve a relative user
characteristic (RUC) curve because it is a comparison of two
user characteristics (Fω and Hω) as the event definition varies.
As for the ROC curve, the no discrimination line corresponds to
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Figure 4. (a) Reliability, (b) resolution and (c) discrimination as a function of the probability level τ of the τ -quantile forecasts and (d) RUC curves for the 50%-quantile
forecasts (τ = 0.5). The results are shown for the simulation test cases A0 (full lines), A1 (dashed lines), A2 (dotted lines) and B (full grey line).

the diagonal line and concavity of the curve indicates forecast
discrimination ability.

Figure 3 (b) shows an example of a RUC curve valid for a
user with cost-loss ratio α = 50%. In this example, the decision
variable is the 50%-quantile forecast from the synthetic dataset
A0. Moving along the RUC curve from the bottom left corner to
the top right corner involves varying the event under focus, the
event’s base rate varying from 0 to 1, respectively. The point with
slope γ = 1 corresponds to the event E : Ω ≥ 0 with base rate
π = 0.5. This point is obviously the same as in Figure 3 (a).

In order to produce a RUC curve, critical decision criteria have
to be known for a range of events. They can be estimated resolving
Eq. (14) numerically. In practice, critical decision criteria can
also be estimated by means of a reliability diagram. For example,
a reliability diagram for quantile forecasts plots the conditional
observed quantile as a function of quantile forecast categories
(Bentzien and Friederichs 2014). With regard to Eq. (15), we can
deduce that the mean forecast in each forecast category (horizontal
axis of the diagram) is an estimation of the critical decision
criteria associated with the events defined by the corresponding
conditional observed quantile (vertical axis of the diagram).

The RUC curve is user specific (and event unspecific) and
therefore well-adapted to quantile forecast discrimination. A
summary measure of quantile discrimination ability is obtained
mimicking the ROC framework: the area under the RUC curve,
noted here AUC′, is proposed as a quantitative measure of
discrimination for quantile forecasts. Considering nE events
Ei : Ω ≥ ωi, i = 1, ..., nE with increasing base rate, AUC′ is
estimated by a trapezoidal approximation as

AUC′ =

nE∑
i=0

0.5(Hωi+1 +Hωi)(Fωi+1 − Fωi) (26)

with the trivial pointsHω0 = Fω0 = 0 (for an event of base rate 0)
and HωnE+1 = FωnE+1 = 1 (for an event of base rate 1). In order
to reduce the biases introduced by the limited number of RUC
points, the RUC curve can be fitted under a bi-normal assumption.
The procedure involves considering Fω and Hω as both expressed
as integrations of the standard normal distribution (Mason 1982).
The bi-normal model has been shown to be valid in most cases
when applied in the ROC framework (Mason and Graham 2002;
Atger 2004).

The properties of the RUC curve and AUC′ are discussed with
the help of illustrative examples based on 4 simple simulation
test cases (see Section 2.1). In Figure 4, the forecast attributes
reliability, resolution and discrimination are shown as a function
of the probability level τ of the τ -quantile forecast under
assessment. RUC curves for the 50%-quantile forecasts are also
shown. Quantile forecast reliability and resolution are estimated
using the decomposition of the quantile score (Bentzien and

Friederichs 2014) while discrimination curves and summary
measures are estimated based on the bi-normal assumption.

Figures 4 (a) shows the lack of reliability, which occurs by
construction in the simulations A1, A2 and B. In Figures 4 (b)
and 4 (c), resolution and discrimination measures deliver a similar
message comparing the different simulations which illustrates the
idea that ”resolution and discrimination are the two faces of the
same coin” (Bröcker 2014). Resolution and discrimination exhibit
however different behaviours as a function of the probability level
reflecting the fact that the first takes the forecaster’s perspective
and the second the user’s perspective. Moreover, discrimination
ability is identical for the simulations A0, A1 and A2: they
are unaffected by biases and dispersion errors. Indeed, AUC′

is by construction insensitive to conditional and unconditional
biases. In contrast, the forecast derived from simulation B with a
perturbed signal presents less discrimination ability than forecasts
from the other simulations, in particular for the 50%-quantile
forecast. Focusing on users with cost-loss ratio α = 0.5 (τ = 0.5) ,
RUC curves for the 50%-quantile forecasts of simulationsA0,A1,
A2, and B are shown in Figure 4 (d). The largest discrepancies
between simulations A and B are visible at the centre of the RUC
curves, so for events with intermediate base rates, while for events
with small or large base rates the RUC curves tend to overlap.

5. Value of quantile forecasts

5.1. Economic value

The cost-loss model described in Section 3.2 has been used to
develop the concept of economic value of a probabilistic forecast.
The forecast value is assessed considering decision-making made
by an α-user about the occurrence of an event. The value of a
forecast (also called value score or relative value) is defined as

V =
Ēclimate − Ēforecast

Ēclimate − Ēperfect
, (27)

where the mean expense Ē of an α-user is estimated when
decisions are based on a forecast (Ēforecast), on a perfect
deterministic forecast (Ēperfect), or on climatological information
(Ēclimate) (Richardson 2000; Wilks 2001; Zhu et al. 2002). V is
a measure of the economic gain (or reduction of mean expense)
when using a forecast relative to the gain when using a perfect
deterministic forecast.

Following e.g. Richardson (2011), the mean expense of a
forecast user can be written as

Ēforecast = F (1− π)C −Hπ(L− C) + πL, (28)

where H and F are the hit rate and false alarm rate as defined in
Eqs (20) and (21), respectively, and π the base rate of the event of
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Figure 5. (a) Potential value V of the probability forecast from simulation A0

for the event defined as E : ω ≥ 0 with base rate π = 0.5. The dashed lines
represent the forecast value when the probability levels 0.1, 0.2, ..., 0.9 are chosen
as decision criterion. The full line represents the envelope of the dashed lines. (b)
Value V for users with cost-loss ratio α = 0.7 of the 30%-quantile forecasts taken
at face value from the 4 synthetic datasets: A0 (full black line), A1 (dashed line),
A2 (dotted line) and B (full grey line). The black point is the common point of the
two plots: value of the simulation A0 for the event with base rate π = 0.5 and a
user with cost loss ratio α = 0.7.

interest. A user with a perfect deterministic forecast at hand has to
face costs only. The user mean expense corresponds in this case
to:

Ēperfect = πC. (29)

For a user who bases his (her) decision on climatological
information, the optimal mean expense is expressed as

Ēclimate =

{
C if α < π

πL if α ≥ π, (30)

depending on the relationship between cost-loss ratio and base
rate. Combining Eqs (28)-(30), the value of a forecast can finally
be written as:

V =

 (1− F )−
(

π

1− π

)(
1− α
α

)
(1−H) if α < π

H −
(

1− π
π

)(
α

1− α

)
F if α ≥ π.

(31)
So, the economic value V is defined for an event with base rate
π and a user with cost-loss ratio α. V depends on the forecast
performance in terms of H and F.

Applied to a probability forecast, the event’s base rate is fixed
and the value of a probability forecast is generally represented in
the form of a probability value plot showing V as a function of
α. An example is provided in Fig. 5 (a), applied to simulation
A0 considering the event E : Ω ≥ 0. The forecast value curves
are plotted for a range of probabilities as decision criterion, then

the optimal values for each α-user (the upper envelope of the
relative value curves) is selected to represent the value of the
probabilistic forecast system (e.g. Richardson 2000; Wilks 2001).
The probability value plot is related to the ROC framework since
the pairs (F,H) of Eq. (31) are the ones used to draw the ROC
curve. It has also been shown that the overall value of a probability
forecast, considering all potential users, corresponds to the Brier
skill score of the forecast if the distribution of cost-loss ratio is
uniform over all users (Murphy 1969; Richardson 2011).

5.2. Quantile value plot

Applied to a quantile forecast, so focusing on a α-user, the value
score is evaluated for a range of events of interest defined for
example by their base rate π. A new tool is therefore proposed
for the assessment of quantile forecast performance: the quantile
value plot which represents how V varies as a function of π.
This is illustrated in Figure 5 (b). The value of the 30%-quantile
forecasts is plotted when the quantile forecasts derived from
simulations A0, A1, A2, and B are taken at face value. Taking
a quantile at face value means using it as it is, so for each event
it implies considering the event threshold as decision criterion
(see Section 3.2). An alternative is to apply the critical decision
criteria, i.e. to use the (F,H) pairs from the RUC curve to
estimate the value in Eq. (31). We talk then about potential value
since it corresponds to the maximum value of the forecast, i.e.
the maximum that could be potentially reached if an adequate
calibration is applied to the forecast. Indeed, value and potential
value are by definition identical if the forecast is reliable.

A parallel between probability value plot and quantile value
plot can be draw. In a probability value plot, the decision variable
is a probability forecast, the base rate π of the event under focus is
fixed and the forecast value V is then plotted for a range of cost-
loss ratios. The role of α and π are inverted in order to produce
a quantile value plot rather than a probability value plot. The
cost-loss ratio is defined by the quantile probability level and a
range of events of interest are scanned. It results that the cost-loss
ratio of the end-user does not appear explicitly in a quantile value
plot while it corresponds to the horizontal axis in a value plot for
probability forecasts.

The fundamental properties of V are however the same
when focusing on one event or on one user. These properties
(demonstrations can be found e.g. in Richardson 2011) are
recalled here. First, the forecast value reaches its maximum when
π = α (or noted differently when π = 1− τ ). For instance, a
forecast user with a cost-loss ratio of α = 0.1 draws a maximum
benefit from a forecast if his (her) event of interest has a
climatological probability of occurrence of 10%. Secondly, the
value of a reliable forecasts (full line in Figure 5 (b)) is always
greater than the value of the same forecast with biases (dashed
and dotted lines in Figure 5 (b)). The value of the reliable forecast
corresponds to the potential value of the two other datasets.
Finally, the potential value is by definition always non-negative.

5.3. A real example

The tools introduced for the assessment of quantile forecast
discrimination and value are here applied to a real dataset.
Quantile forecasts of global radiation are derived from COSMO-
DE-EPS and assessed for two periods of the year 2013. Results
for the winter period are shown in Figure 6 and results for the
summer period in Figure 7. Quantile discrimination is estimated
with the area under the RUC curve (AUC′) for probability levels
τ = 0.1, 0.2, ..., 0.9. A deeper analysis is performed for the 10%-,
50%- and 90%-quantile forecasts with the help of quantile value
plots.
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Figure 6. Verification results for COSMO-DE-EPS global radiation forecasts during winter 2012/2013: quantile discrimination ability (AUC′) as a function of the
probability level (a), potential value (full line) and actual value (dashed line) of the 10%-quantile forecast (b), 50%-quantile forecast (c) and 50%-quantile forecast (d) as a
function of the event of interest defined by thresholds of the clearness index in %.
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Figure 7. Same as Figure 6 but for summer 2013.

The discrimination ability of the EPS quantile forecasts varies
as a function of the probability level but is greater than 0.80
which can be interpreted as good performance. For the winter
season, discrimination is higher for high and low probability
levels than intermediate ones whereas for the summer season,
discrimination is approximately constant over the probability
levels with a tendency to decrease for high levels. Inspection of
the quantile value plot allows a deeper insight into the forecast
potential performance. This could be relevant for quantile users
with a specific interest in only one part of the event spectrum. For
example, consider a user with a non linear loss function, the loss
becoming zero if the outcome is below (above) a given threshold
T . The user can then interpret the quantile value plot focusing on
the range of events below (above) T disregarding the rest of the
plot. The potential value and the actual value of the COSMO-DE-
EPS quantile forecasts are plotted as a function of event in terms
of the clearness index in % to simplify the reading of the plots. An
event has a different base rate for each season which complicates
a direct comparison of the quantile value plot in Figures 6 and 7.
The comparison of the potential and actual values (full lines and
dashed lines) shows the impact of the reliability discrepancies on
the forecast value.

5.4. Overall value and Quantile Skill Score

As a final step in drawing a parallel between probability forecast
verification and quantile forecast verification, the relationship
between value and skill score with climatology as a reference is
explored. It has been shown that the overall value of a probability
forecast is equivalent to its Brier Skill Score (BSS) when the
users have a uniform distribution of cost-loss ratio (Murphy 1969;
Richardson 2011). Similarly, we now investigate the relationship
between the overall value of a quantile forecast and its QSS.

For this purpose, we extend the cost-loss model to more than
two observation categories assuming that the cost C and the loss
L of the cost-loss model are the unitary increment of cost and
loss per unit of variable, respectively, as discussed in Section 3.3.
Following Richardson (2011), the overall value is defined as the
ratio

Vall =
TC − TF
TC − TP

(32)

where the total mean expense T of a user is estimated when
decisions are based on a climatological forecast (TC ), on a perfect
deterministic forecast (TP ) or on a given forecast (TF ) so that Eq.
(32) is the extension of Eq. (27) to all possible events.

The total expense for a perfect deterministic forecast
corresponds to the sum of the costs C associated with each
observation. The total mean expense TP can then be expressed
as

TP =
1

N

N∑
i=1

CΩi. (33)

For a climatological quantile forecast Ωτ , the total expense
corresponds to the sum of the costs associated with Ωτ and the
losses encountered when the observations are greater than the
climatological forecast (Ωi ≥ Ωτ ). The total mean expense for a
climatological forecast TC is written as

TC =
1

N

N∑
i=1

CΩτ +
1

N

∑
i:Ωi≥Ωτ

L(Ωi − Ωτ ). (34)

Considering now a sample of quantile forecasts qτ,i and the
corresponding observations Ωi, the total expense of a forecasts
user corresponds in that case to the sum of the costs associated
with each forecast qτ,i and the losses encountered when Ωi ≥ qτ,i,
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given by

TF =
1

N

N∑
i=1

Cqτ,i +
1

N

∑
i:Ωi≥qτ,i

L(Ωi − qτ,i). (35)

Combining Eqs (33)-(35), it is shown in the Appendix that
the overall value Vall corresponds to QSS (Eq. (8)) with the
climatology as a reference based on the assumption of constant
cost-loss ratio for all outcomes. In other words, extending the
dichotomous event-action framework to a continuous framework
allows one to turn back to the ‘classical‘ or ‘natural‘ measure
of performance for quantile forecast. Conversely, using the
dichotomous framework provides the keys to making a deeper
analysis of the quantile performance at the event level.

6. Conclusion

Verification measures and tools related to users’ decision-making
are provided here for quantile forecasts as decision variables.
Drawing a parallel with the verification of probability forecasts,
the new verification tools allow the scuite of verification methods
for quantile forecasts to be completed. In particular, the concepts
of forecast discrimination and forecast value are discussed based
on a simple cost-loss model.

First, the RUC curve is shown to be the counterpart of the ROC
curve when the focus is on a given user rather than on a given
event. The areas under the RUC and ROC curves are summary
measures of discrimination adapted to quantile and probability
forecasts, respectively. Both measures share the same properties,
such as non-sensitivity to calibration.

Second, the translation of discrimination ability into value is
explored with the help of the value score. The definition of the
forecast value is directly adopted from the probability forecast
verification framework. Forecast value and forecast potential
value are estimated when the decision variable is a quantile
forecast, so focusing on a user with a specific cost-loss ratio. The
first is obtained when the forecast is taken at face value and the
second when critical decision criteria are applied. The value of
a quantile forecast can then be plotted as a function of a range
of events of interest, defined for example in terms of base rates.
The derived plot is called a quantile value plot and provides a
valuable insight into the performance of a quantile forecast. As
a real example, the discrimination ability and value of global
radiation forecasts from COSMO-DE-EPS are demonstrated over
a summer and a winter period.

Finally, it is shown that the overall value of a quantile
forecast corresponds to the quantile skill score with climatology
as reference when a constant cost-loss ratio for all outcomes
is assumed. In the same spirit as the weighted version of the
continuous ranked probability score proposed by Gneiting and
Ranjan (2011), a weighted version of the quantile skill score could
be envisaged in order to take into account specific use of quantile
forecasts.
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Appendix

Overall value and Quantile Skill Score

From Eqs (33) and (34), the difference in expense between
climatological and perfect deterministic forecasts can be written

as

TC − TP =
1

N

N∑
i=1

C(Ωτ − Ωi) +
1

N

∑
i:Ωi≥Ωτ

L(Ωi − Ωτ )

(36)

Considering the relationship τ = 1− C

L
and setting L equal to

1 in the following demonstration without loss of generality, we
obtain

TC − TP =
(1− τ)

N

N∑
i=1

(Ωτ − Ωi) +
1

N

∑
i:Ωi≥Ωτ

(Ωi − Ωτ )

(37)
and with some algebra

TC − TP =
(1− τ)

N

∑
i:Ωi≤Ωτ

(Ωτ − Ωi) +
τ

N

∑
i:Ωi≥Ωτ

(Ωi − Ωτ )

(38)

This mean expense difference, TC − TP , corresponds to the
definition of the quantile score for a climatological forecast
(QSclimate).

In the same manner, from Eqs (35) and (34), the difference
between climatological forecast expense and the quantile forecast
expense is written as

TC − TF =
1

N

N∑
i=1

CΩτ +
1

N

∑
i:Ωi≥Ωτ

L(Ωi − Ωτ )

− 1

N

N∑
i=1

Cqτ,i −
1

N

∑
i:Ωi≥qτ,i

L(Ωi − qτ,i)

(39)

which becomes after some algebra

TC − TF =
(1− τ)

N

∑
i:Ωi≤Ωτ

(Ωτ − Ωi) +
τ

N

∑
i:Ωi≥Ωτ

(Ωi − Ωτ )

−
(

(1− τ)

N

∑
i:Ωi≤qτ,i

(qτ,i − Ωi) +
τ

N

∑
i:Ωi≥qτ,i

(Ωi − qτ,i)
)

(40)

where the first term corresponds to the definition of the quantile
score for a climatological forecast (QSclimate, Eq. (38)), and the
second term to the quantile score (QSforecast, Eq. (7)). With regard
to the definition of the quantile skill score and of the overall value
(Eqs (8) and (32), respectively), we end up with:

Vall = QSS (41)
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