43 research outputs found

    Change in diet, physical activity, and body weight among young-adults during the transition from high school to college

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The freshmen year of college is likely a critical period for risk of weight gain among young-adults.</p> <p>Methods</p> <p>A longitudinal observational study was conducted to examine changes in weight, dietary intake, and other health-related behaviors among first-year college students (n = 186) attending a public University in the western United States. Weight was measured at the beginning and end of fall semester (August – December 2005). Participants completed surveys about dietary intake, physical activity and other health-related behaviors during the last six months of high school (January – June 2005) in August 2005 and during their first semester of college (August – December 2005) in December 2005.</p> <p>Results</p> <p>159 students (n = 102 women, 57 men) completed both assessments. The average BMI at the baseline assessment was 23.0 (standard deviation (SD) 3.8). Although the average amount of weight gained during the 15-week study was modest (1.5 kg), 23% of participants gained ≥ 5% of their baseline body weight. Average weight gain among those who gained ≥ 5% of baseline body weight was 4.5 kg. Those who gained ≥ 5% of body weight reported less physical activity during college than high school, were more likely to eat breakfast, and slept more than were those who did not gain ≥ 5% of body weight.</p> <p>Conclusion</p> <p>Almost one quarter of students gained a significant amount of weight during their first semester of college. This research provides further support for the implementation of education or other strategies aimed at helping young-adults entering college to achieve or maintain a healthy body weight.</p

    The Insulator Binding Protein CTCF Positions 20 Nucleosomes around Its Binding Sites across the Human Genome

    Get PDF
    Chromatin structure plays an important role in modulating the accessibility of genomic DNA to regulatory proteins in eukaryotic cells. We performed an integrative analysis on dozens of recent datasets generated by deep-sequencing and high-density tiling arrays, and we discovered an array of well-positioned nucleosomes flanking sites occupied by the insulator binding protein CTCF across the human genome. These nucleosomes are highly enriched for the histone variant H2A.Z and 11 histone modifications. The distances between the center positions of the neighboring nucleosomes are largely invariant, and we estimate them to be 185 bp on average. Surprisingly, subsets of nucleosomes that are enriched in different histone modifications vary greatly in the lengths of DNA protected from micrococcal nuclease cleavage (106–164 bp). The nucleosomes enriched in those histone modifications previously implicated to be correlated with active transcription tend to contain less protected DNA, indicating that these modifications are correlated with greater DNA accessibility. Another striking result obtained from our analysis is that nucleosomes flanking CTCF sites are much better positioned than those downstream of transcription start sites, the only genomic feature previously known to position nucleosomes genome-wide. This nucleosome-positioning phenomenon is not observed for other transcriptional factors for which we had genome-wide binding data. We suggest that binding of CTCF provides an anchor point for positioning nucleosomes, and chromatin remodeling is an important component of CTCF function

    Cardiosphere-Derived Cells Improve Function in the Infarcted Rat Heart for at Least 16 Weeks – an MRI Study

    Get PDF
    Aims Endogenous cardiac progenitor cells, expanded from explants via cardiosphere formation, present a promising cell source to prevent heart failure following myocardial infarction. Here we used cine-magnetic resonance imaging (MRI) to track administered cardiosphere-derived cells (CDCs) and to measure changes in cardiac function over four months in the infarcted rat heart. Methods and Results CDCs, cultured from neonatal rat heart, comprised a heterogeneous population including cells expressing the mesenchymal markers CD90 and CD105, the stem cell marker c-kit and the pluripotency markers Sox2, Oct3/4 and Klf-4. CDCs (2×106) expressing green fluorescent protein (GFP+) were labelled with fluorescent micron-sized particles of iron oxide (MPIO). Labelled cells were administered to the infarcted rat hearts (n = 7) by intramyocardial injection immediately following reperfusion, then by systemic infusion (4×106) 2 days later. A control group (n = 7) was administered cell medium. MR hypointensities caused by the MPIOs were detected at all times and GFP+ cells containing MPIO particles were identified in tissue slices at 16 weeks. At two days after infarction, cardiac function was similar between groups. By 6 weeks, ejection fractions in control hearts had significantly decreased (47±2%), but this was not evident in CDC-treated hearts (56±3%). The significantly higher ejection fractions in the CDC-treated group were maintained for a further 10 weeks. In addition, CDC-treated rat hearts had significantly increased capillary density in the peri-infarct region and lower infarct sizes. MPIO-labelled cells also expressed cardiac troponin I, von Willebrand factor and smooth muscle actin, suggesting their differentiation along the cardiomyocyte lineage and the formation of new blood vessels. Conclusions CDCs were retained in the infarcted rat heart for 16 weeks and improved cardiac function

    A cross-over experiment to investigate possible mechanisms for lower BMIs in people who habitually eat breakfast

    Get PDF
    © 2015 Macmillan Publishers Limited. The body mass index (BMI) of breakfast eaters is frequently reported to be lower compared with that of breakfast skippers. This is not explained by differences in energy intakes, indicating there may be other mechanisms serving to drive this paradoxical association between breakfast and BMI. This study aimed to investigate the effect of eating breakfast versus morning fasting on measures predominantly of metabolism in lean and overweight participants who habitually eat or skip breakfast.Subjects/Methods:Participants (n=37) were recruited into four groups on the basis of BMI (lean and overweight) and breakfast habit (breakfast eater and breakfast skipper). Participants were randomly assigned to a breakfast experimental condition, breakfast eating or no breakfast, for 7 days and then completed the alternative condition. At the end of each breakfast experimental condition, measurements were made before and after a high carbohydrate breakfast of 2274±777 kJ or a rest period. Resting metabolic rate, thermic effect of food (TEF), blood glucose, insulin and leptin levels were recorded. Hunger and 'morningness' were assessed and pedometers worn.Results:Lean participants had lower fasting insulin levels (P=0.045) and higher insulin concentrations following breakfast (P=0.001). BMI and breakfast habit did not interact with the experimental breakfast condition, with the exception of hunger ratings; breakfast eaters were hungrier in the mornings compared with breakfast skippers in the no breakfast condition (P=0.001).Conclusions:There is little evidence from this study for a metabolic-based mechanism to explain lower BMIs in breakfast eaters.Published versio
    corecore