
183

Molecular and Cellular Biochemistry 184: 183–194, 1998.
© 1998 Kluwer Academic Publishers. Printed in the Netherlands.

+ ATP, a nodal event in the network for high energy phos-
phoryl transfer in vertebrates. Although many concepts have
been formulated to explain CK’s role in high energy-
phosphoryl homeostasis [1, 2], relatively little is known
about its involvement in maintaining the integrity of
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Abstract

We have blocked creatine kinase (CK) mediated phosphocreatine (PCr)     ATP transphosphorylation in mitochondria and
cytosol of skeletal muscle by knocking out the genes for the mitochondrial (ScCKmit) and the cytosolic (M-CK) CK isoforms
in mice. Animals which carry single or double mutations, if kept and tested under standard laboratory conditions, have
surprisingly mild changes in muscle physiology. Strenuous ex vivo conditions were necessary to reveal that MM-CK absence
in single and double mutants leads to a partial loss of tetanic force output. Single ScCKmit deficiency has no noticeable
effects but in combination the mutations cause slowing of the relaxation rate. Importantly, our studies revealed that there is
metabolic and cytoarchitectural adaptation to CK defects in energy metabolism. The effects involve mutation type-dependent
alterations in the levels of AMP, IMP, glycogen and phosphomonoesters, changes in activity of metabolic enzymes like AMP-
deaminase, alterations in mitochondrial volume and contractile protein (MHC isoform) profiles, and a hyperproliferation of
the terminal cysternae of the SR (in tubular aggregates). This suggests that there is a compensatory resiliency of loss-of-
function and redirection of flux distributions in the metabolic network for cellular energy in our mutants. (Mol Cell Biochem 184:
183–194, 1998)
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→←

Introduction

Creatine kinases (CK; EC 2.7.3.2) form a small family of
mitochondrial and cytosolic isoenzymes which catalyse the
reaction phosphocreatine (PCr) + ADP + H+       creatine (Cr)→←

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15466555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


184

metabolic-energy compartmentalization [3–5] and the
communication between intracellular sites of ATP con-
sumption and production. Depending on cell-type one can
find different CK isoforms in mitochondria (i.e. the dimeric
or octameric sarcomeric (Sc) or ubiquitous (Ub) mitCKs)
and cytosol (i.e. the homo and heterodimeric MM-, BM- or
BB-CKs) in all tissues with large fluctuations in energy
metabolism, such as muscle and CNS [2]. Individual CK
family members may appear at different stages and locations
during animal development but their functional activities
appear usually coordinately at different cellular locations.
It is generally assumed that CK’s help in keeping subcellular
levels of ATP and its hydrolysis products ADP, AMP, P

i
 and

H+ delicately balanced. In turn, these levels – or the ratios
thereof – may govern the dynamic kinetics of many ATPases
in different microenvironments [6–9] and may determine the
rate of glycolysis and oxidative phosphorylation (OXPHOS)
[10, 11] and the activity of ion-pumps ([2, 12, 13] and refs
therein). The precise flux distribution through the CK
reaction of high-energy phosphoryl metabolites in distinct
mitochondrial, cytosolic or nuclear compartments is
however very difficult to study as it is intertwined by high-
energy phosphoryl interconversion reactions catalyzed by
adenylate kinase (AdK) [14], nucleoside-mono and -di-
phosphate kinases, hexokinase or glycerol kinase. Individual
reaction steps in this elaborate and complex network might
well be facilitated by the subcellular clustering of these
kinases in multienzyme complexes [1], which may keep
metabolites from entering the cellular pool. Interestingly, the
allocation of CK’s to distinct cellular sites is dynamically
influenced in response to variation in energy demand and
may be an important physiological mechanism(s) for
regulating the enzymes’ catalytic properties [2, 15].

In order to obtain a better understanding of the subcellular
partitioning of components of the CK/PCr system, and to
unravel its role in the compartmentalization of energy
homeostasis in different cell types it will become of utmost
importance to apply experimental methods which preserve
the integrity of the cells delicate organization, and the
communication between specific cellular ‘aggregulons’ or
microcompartments. Fortunately, the rapid development of
techniques to manipulate gene expression in vivo, in cell’s
and experimental animals, is providing us with powerful new
tools for these kind of studies; Normal or mutant genes of
interest can be either overexpressed, or their expression
can be directed to specific tissues using ‘conventional’
transgenesis by micro-injecting DNA into the fertilized egg
[16]. In an alternative approach, gene targeting in mouse
embryonic stem (ES) cells creates the possibility to produce
mice carrying predesigned mutations in the germline [17].
This technique, mostly applied as a gene ‘knock-out’
mutagenesis method, has already been used to generate
hundreds of new mouse lines [18] and is currently one of

the methods of choice for revealing unknown gene functions
in the context of the whole animal (see [19–23] for review).
We and others have applied the methodology for altering the
expression levels of the different CK isoenzymes in vivo.
Conventional transgenic techniques have been applied to
direct B-CK and UbCKmit isoenzyme expression to mouse
liver [24], as well as to induce ectopic B-CK expression in
striated muscle tissue [25–27]. Our group has generated
mice completely deficient in M-CK subunits and mice
expressing reduced levels of M-CK, by gene targeting. The
biological consequences of these mutations have been
characterised [28, 29]. Likewise, animals lacking either the
ubiquitous mitochondrial CK subform (UbCKmit), or the
sarcomeric mitochondrial CK (ScCKmit) isoenzyme, with
suprisingly little phenotypic effects, have been generated [30,
31]. Here, we summarize old and new data regarding the
genotype-phenotype relationship in muscles of mice with
single or combined M-CK and ScCKmit deficiency, under
normal laboratory conditions. One particular intriguing
observation, the developmental adaptation of metabolic and
cytoarchitectural characteristics of muscle in response to
mutation-induced defects, is discussed most extensively.

Nodal links between the CK-circuit and muscle (cell)
physiology

In muscle, MM-CK mediated ATP production is mainly
coupled to the local activity of SR- and plasma-bound Ca2+-
ATPases [6, 8, 9, 32], the Na+/K+-ATPase [33, 34] and the
myosin ATPase involved in actin-myosin sliding during
contraction in the sarcomeric M-band [35–39]. The MM-CK
mediated reaction is also topologically coupled to the
glycolytic metabolic reaction cascade in the I-band thin-
filament region [35]. The ScCKmit reaction is thought to
be involved in the transphosphorylation, channelling and
transport of high-energy phosphoryl groups from mito-
chondria to the cytosol in muscle [40]. In addition, the
ScCKmit mediated reaction may fuel mitochondrial ATPases
(Ca2+ or K+-ATPases), in analogy to the cytosolic situation,
but this is still a rather hypothetical possibility.

CK-mutant mice

To assess the effects of CK absence on these different
functions in muscle we have generated mice lacking either
the mitochondrial CK (ScCKmit), the cytosolic CK (M-
CK) or a combination of both enzymes, by interbreeding
ScCKmit [–/–] [13, 30, 31] and M-CK [–/–] [28] deficient
mice in all possible combinations. By genotyping 215
offspring from intercrosses between double heterozygous
(i.e. ScCKmit [+/–]; M-CK [+/–]) animals eleven wild-types
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and ten ScCKmit [–/–]; M-CK [–/–] double mutants were
identified. Contrary to expectation, these double deficient
mice (henceforth indicated as CK [–/–]) were not overtly
different from wild type, or single mutant animals, and bred
normally. Zymogram assays of cardiac and skeletal muscle
extracts of 6 week old CK mutants confirmed that the
anticipated CK profiles were present in the ScCKmit and M-
CK single and the CK double mutants muscles (Fig. 1). No
ectopic expression of any of the two other members of the
CK gene family, brain-type (B-CK) or ubiquitous mito-
chondrial CK (UbCKmit) was seen in any mutant. Only in
heart muscle we saw a slight increase in the level of BB-CK
isoenzyme but this can be explained by the lack of capture
of B-type subunits in MB-CK heterodimers as noted before
[28]. Residual total CK activity in heart and skeletal muscle
extracts was lowered to 0.3 and 2% of wild-type levels,
respectively, and can be entirely attributed to the BB-CK
and UbCKmit content, which in skeletal muscle is found
especially in capillary or vasculature endothelium and
satellite cells. Despite the fact that adenylate kinase (AdK)
activity was inhibited by the inclusion of P1,P5-(di(adenine-
5′)-pentaphosphate (ApSA) in our zymogram assays often a
weak band of AdK activity was seen in the extracts from
double knock-out animals. Although many explanations are
possible this may suggest that AdK activity is increased in CK
[–/–] mice, consistent with the idea that there is functional
overlap and interrelated coupling between the CK and AdK
circuits in the OXPHOS and glycolytic networks for storage
and transport of high energy phosphoryl groups [41].
Currently, in collaboration with Dr. N. Goldberg, we are
studying this phenomenon in more detail by the use of 18O
incorporation into the β and γ phosphoryls of ATP and the

phosphoryl groups of various other metabolites in the
structurally intact tissues.

Metabolite levels

Chemical methods were used to examine whether CK
deficiency had influenced the levels of energy-related
metabolites in muscles at rest [13, 30, 31]. Concentrations
of ATP in CK [–/–] muscles (18.1 ± 2.6 µM/g dry wt) were
somewhat lower than in wild-type and ScCKmit [–/–]
muscles (24.5 ± 4.8 and 22.9 ± 2.0 µM/g, respectively),
but only marginally lower than in M-CK [–/–] muscles
(19.1 ± 2.1 µM/g). Another series of measurements showed
that AMP and IMP levels (0.51 ± 0.08 or 0.66 ± 0.10 µM/g,
respectively) in the gastrocnemius-soleus-psoas complex of
M-CK [–/–] and CK [–/–] mutants were roughly 5-fold higher
than the levels in wild type and ScCKmit mice (0.11 ± 0.03
or 0.15 ± 0.04 µM/g, for AMP or IMP, respectively). It is
important to note that any direct estimates on the primary
effects of CK absence on the degree of overproduction of
AMP and IMP may be unreliable, as adaptation in the primary
metabolism of these compounds, attributable to other
enzymes in the adenylate metabolic network, may involve
significant redirection of flux distribution (see below).

Most surprisingly, we observed that the concentration of
PCr in the medial gastrocnemius of CK [–/–] animals was only
slightly lower than in wild-types (51.6 ± 5.2 vs. 62.1 ± 2.2
µmoles/g dry wt). Levels of total Cr (Cr + PCr) were similar
in all muscles (with non normalised values ranging between
86.2–106.5 µmoles per g dry wt), indicating that Cr import
mechanisms per se are not affected. This unexpected
presence of PCr was confirmed by in vivo 31P nuclear
magnetic resonance (NMR) spectroscopy (Fig. 2). Fully
relaxed resting state spectra of CK [–/–] hindlimb muscles
showed a clear PCr peak, appearing at exactly the chemical
shift position expected for PCr (at 2.44 ± 0.02 ppm from
the position of γATP). The relative positions of the three ATP
resonances in double mutant skeletal muscle spectra were
similar to wild-type spectra. Relative peak areas (as % of
total) of energy metabolites in wildtype, ScCKmit [–/–] and
M-CK [–/–] single mutants were all similar [13], but CK
[–/–] mutant muscles showed a significantly lower PCr
signal (35.6% vs. 46.5–47.3%) and somewhat higher ATP
signals with respect to the total phosphate signal area.
Consequently, this results in a 30% lower PCr/ATP ratio. We
think that NMR data give a better reflection of the actual
metabolite levels than the chemical method, because minor
energy metabolite changes can be induced by the freezing
procedure. In another report [42] we have provided evidence
that the PCr pool does not exchange with ATP and is
metabolically completely inert, even under conditions of
complete hypoxia. This leaves the question how and when

Fig. 1. Zymogram gel analysis of skeletal (lanes 1–4) and cardiac (lanes 5–
8) muscle extracts from wild-type (+/+) (lanes 1, 5), M-CK [–/–] (lanes 2, 6),
ScCKmit [–/–] (lanes 3, 7) and CK [–/–] double mutant (lanes 4, 8) mouse.
Note the absence of the ScCKmit and MM-CK isoforms in the different
mutants and note also the weak signal of residual AdK activity (not fully
inhibited by Ap5A) in the CK [–/–] mutant.
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CK [–/–] and 7.21 ± 0.05 for CK [–/–]). Currently, in order
to better understand the basis and origin of the phospho-
monoester accumulation we are using high resolution NMR
spectroscopy of metabolites in a perchloric acid extract of
clamp frozen muscle to identify the precise chemical origin
of the signals.

Earlier, we had reported that resting-state glycogen content
and the ability to consume this glycogen was about 60%
increased in M-CK muscle compared to wild-type [28] mainly
due to an increase in fast-type fibers. A similar increase was
found for CK [–/–] double mutants, but ScCKmit [–/–] animals
had near wild-type glycogen levels [13]. Taken together our
data suggest that CK absence causes a considerable re-
direction of flux distribution in various branches of primary
metabolism. This may lead to compensatory adaptation in the
steady-state levels of AMP, IMP and inorganic phosphate as
well as the levels of phosphomonoester carbohydrate-
metabolites. It should be emphasized again that all muscles
studied were from animals kept under normal housing
conditions. How the steady-state metabolite levels can fluctuate
during development, growth and activity-induction of the
different CK-mutants is subject for further study.

Physiology and cytoarchitectural adaptations

Details on the physiological consequences of CK ablation
have been published [13, 31, 42]. All observations relate to
the testing of muscle performance upon artificial electrical
stimulation, ex vivo. From our studies, as illustrated in Fig. 3
we had concluded that M-CK is the dominant governing
principle in the reduction of tetanic force output (i.e.
generation of burst activity; [13, 28]) in skeletal muscle. If
combined with M-CK deficiency, but not singly, ScCKmit
deficiency leads to increase in relaxation time [42].

In a first in vivo survey we found no overt effects on
animal activity or behaviour, in keeping with the fact that a
number of biochemical parameters (in f.e. heart mito-
chondrial activity, oxygen consumption) were essentially
unchanged [13]. Apparently, muscle physiology is not
challenged to threshold levels under normal laboratory
housing conditions, but we might have missed subtle effects.
Therefore, to examine the basic physiological functions in our
mutants in somewhat more detail we started computerized
telemetric analyses [43, 44] of heart beat rate, core tem-
perature and gross locomotor activity. Figure 4 shows the
typical recordings of one CK [–/–] double knock out and one
wild type animal during a continuous monitoring period of
2 days with successive light (14 h) and dark (10 h) intervals.
After averaging the measurements on three CK [–/–] and two
wild type animals there were no significant differences.
Average body temperature ranged from 36.7°C (dark period)
to 35.9°C (light period) in mutant and wild type animals, heart

Fig. 2. 31P-NMR recordings of phosphate metabolites in lower hind limb
musculature at rest of wild-type and CK [–/–] mice. Spectra in the top panel
(wild type) and the bottom panel (CK [–/–]) represent the average of 48 free
induction decays of 70° pulses and 5 sec repetition time, giving a time
resolution of 4 min per spectrum. Positions of signals from the phosphoryl
groups in PCr, the γ, α- and β- groups in ATP (from left to right), the
inorganic Pi, and the phosphomonoesters (outermost left signal) can be
seen as separate peaks.

the PCr was formed in our mutants and whether it can
accumulate in a time-dependent fashion during development
or growth. At this moment it is even not clear if PCr was
imported via circulation or via gap-junctional contact with
cells from muscle-adjacent tissues, or formed by phosphoryl-
transfer-enzymes with low substrate specificity.

The peak area measurements also show that relative
levels of inorganic phosphate (P

i
) and phospho-mono-

esters (PME) have increased significantly, about 2–3 fold,
in CK [–/–] muscles, more than in the muscles with single
CK mutations. The abnormal accumulation of phospho-
mono-esters points to a deregulation or adaptation of the flux
through the glycolytic pathway, which however does not
lead to significant accumulation of lactate. We come to
this conclusion because pH calculations from the res–
onance positions in the 31P spectra yielded similar values
for wild-type (7.29 ± 0.07) and CK mutants muscles at
rest (7.17 ± 0.05 for ScCKmit [–/–], 7.24 ± 0.02 for M-
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serious obstacle to normal heart and skeletal muscle physio-
logical-functioning under laboratory conditions.

Consequences for mitochondria and ER membranes

Previously, we had observed that M-CK absence is com-
pensated by an adaptation in mitochondrial volume in type
2 (fast) fibers of the gastrocnemius-psoas-soleus (GPS)
complex of M-CK [–/–] mice, but that the mitochondrial
ultrastructure is otherwise fully normal [28, 29]. To see
whether other compensatory mechanisms were involved in
ameliorating the complete loss of the Cr-PCr shuttle
function in CK [–/–] animals we repeated the morphometric
inspection and examined the fiber ultrastructure of diaphragm,
heart, intercostal, gastrocnemius and soleus muscles.
Although we did not quantify the effect in absolute terms, the
enlarged intermyofibrillar mitochondrial volume (1.5–2 fold)
was clearly apparent in all muscles, except heart [13, 31].
Biochemical activity determination showed an increase from
353 ± 76 to 470 ± 42 mU/mg protein for COX and from 69
± 15 to 117 ± 21 mU/mg protein for CS (both mitochondrial
marker enzymes) in 600 g whole-tissue extracts from hind-
limb. In contrast, COX and CS levels in heart (955 ± 303 vs.
937 ± 354 for COX and 236 ± 57 vs. 263 ± 86 for CS,
respectively) did not differ between wild type and CK [–/–]
mice, in keeping with the ultrastructural analyses. Mito-
chondria in CK [–/–] skeletal muscles were often packed in
rows and their sizes were highly variable, ranging from
extremely large (more than 5 µm in length) to very small.
Moreover, mitochondria-rich fibers of all CK [–/–] muscles,
including heart, diaphragm and large glycolytic skeletal
muscles, were distinctly different from other mutants and
wild type in that they contained large(r) numbers of lipid
droplets [13]. In semi-thin 1 µm sections, these lipid
droplets can often be seen as strings of beads. Electron
microscopic examination revealed the lipid droplets to be
located immediately adjacent to, and occasionally inside,
the intermyofibrillar mitochondria. Association to the
subsarcolemmal mitochondrial population was only rarely
observed. Furthermore, mitochondria containing glycogen,
lipofuscin granules, and other lysosomal structures were
present in increased numbers in CK [–/–] muscles (data not
shown). These deposits are common to diseased muscle and
occur to a much lesser extent in normal muscle during ageing
[46]. Are these changes cause or consequence of an altered
mitochondrial physiology or is a cytoplasmic factor the
principal governing principle? To address these questions we
next examined whether the number of mitochondrial contact
sites had undergone changes in double CK mutants (Fig. 5A).
Contact sites are fusions between the inner and outer
mitochondrial membranes which are dynamically regulated
multi-subunit structures that assemble in coordinance with

Fig. 3. Contractile characteristics of wild-type and CK-mutant medial
gastrocnemius muscles during high-intensity exercise. The isometric force
production profiles (as % of the initial force) in wild-type (open squares),
ScCKmit [–/–] (black squares), M-CK [–/–] (black circles) and CK [–/–]
double-mutants (open circles) in muscles are shown. The muscle complex
was stimulated 4 times per sec at 100 Hz with an intermittent stimulus duration
of 165 msec; the brief periods between contractions were sufficient for
complete relaxation. Note that the ScCKmit force profile overlaps with the
wild type profile. Recovery, as seen in the M-CK [–/–] profile is absent in
the CK [–/–] profile.

beat rates varied between average 469–521 (light-dark) in CK
[–/–] mice to average 513–561 (light-dark) beats/min in wild
types. Locomotor activity varied between 44 (dark) to 26
(light) for CK [–/–] and 57 (dark) to 27 (light) crossings/min
for wild type. Although these figures suggest that CK [–/–]
mice may be slightly less active during the dark period, the
differences are subtle and obviously many more recordings
on a large series of animals are necessary to make this
statistically significant. As is evident from Fig. 4 the fluctu-
ations in minima and maxima of body temperature, heart beat
rate and activity within individual dark or light intervals were
considerable. We therefore limited ourselves to obtaining a
qualitative impression because of several technical and
logistic reasons. One reason being that the current state of
sophistication of the equipment is still rather limited and in
combination with the ‘difficult-to-standardize surgical
transplantation-location’ of the transmitter and electronic
leads can be the cause of considerable experimental variation.
Another – more interesting – variable can be introduced by
the genetics of the knockout procedure, as all our mutants and
controls have a mixed and variable background of 129/Sv ×
C57BL/6 inbred genes. There is tight coupling of brain
function to all three variables measured (heart rate, temper-
ature and activity) and it is now becoming increasingly clear
that effects of genetic background cannot be ignored in these
studies [45]. Interestingly, both groups of mice show the
normal physiological response towards light and dark periods.
We thus may conclude that CK absence does not form a
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Fig. 4. Representative telemetric recordings of heart rate (top panels), body temperature (°C, middle panels) and locomotor activity (bottom panels) in one
single wild type and CK [–/–] animal. Intermittant periods with dark (10 h; black dots) and light (14 h) housing conditions are indicated. Note the (normal) drop
in body temperature and activity during the light period in both animals.
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metabolic activity [14, 47, 48]. A direct function for mitCK in
the assembly of these structures has been suggested by the
extensive studies of Wallimann and coworkers [40, 15]
showing that mitCK-octamers may physically bridge the gap
between the mitochondrial inner- and outer membrane. For
contact site surface density measurement we cytometrically
compared [49] skeletal and myocardial muscles of wild type
and CK [–/–] mutants. Suprisingly, even though different
metabolic pathways are used (as described above) we found
no significant difference in contact site densities (Ss)
between wt (0.37 ± 0.05) and CK [–/–] (0.36 ± 0.02) animals
in femoral quadriceps muscle. The data for myocardial
muscle were Ss = 0.31 ± 0.01 and Ss = 0.36 ± 0.02 for the
wt and CK [–/–], respectively. The slight increase seen in CK
[–/–] mitochondria - if real - may originate from the fact that
CK [–/–] mice are more affected by emotional stress upon
handling, prior to anaesthetizing the animals. The larger
S.E.M. value for skeletal muscle is due to the less efficient
fixation. Our data indicate that the formation of contact sites
per se is not blocked by the absence of ScCKmit in our
mutants and we are currently investigating the dynamics of
contact formation under regimes where we stimulate or
inhibit OXHPOS, to examine whether CKmit has any role
at all in the dynamic process of contact site formation.

Another distinct feature of CK [–/–] animals was the
omnipresence of conspicuous, darkly staining, elongated

inclusions within the large fibers of gastrocnemius and
intercostal muscles (Fig. 5B). Within these fibers, the
inclusions are seen at both subsarcolemmal and inter-
myofibrillar localizations. Ultrastructural examination of
various fibers revealed that the inclusions consist of closely
packed, longitudinally oriented clusters of membranes,
known as tubular aggregates (TAs). Besides the well-ordered
aggregates, unorganized, more dilated membrane structures
with varicosities containing electron-grey material were
also observed. TAs are a distinct pathological structure in
skeletal muscle consisting of aggregated terminal cisternae
or longitudinal components of the sarcoplasmic reticulum
(SR) [46]. They may be functionally equivalent to hypertrophy
of the SR terminal cisternae and have been shown to be
highly reactive with antibodies against Ca2+-ATPases and
calsequestrin. The maximal calcium content of TA-containing
fibers is increased [50]. Remarkably, TA-like structures were
not found in single mutations and have never been reported
in creatine-depleted muscles, when rodents are fed with
creatine analogues [2]. In humans, the occurrence of TAs has
been associated with conditions caused by mutations in
genes for the dihydropyridine receptor subunits, the
ryanodine receptor (Ca2+-channels), the adult sodium
channel gene SCN4A [46, 51, 52], and a variety of other
muscle diseases [53]. In mice, TAs have been observed in
murine dystrophy heterozygotes [54] and in congenic mice

Fig. 5A. Electron micrograph of a transverse section of a heart muscle cell.
The right side of the surrounding membranes of the mitochondrion at the
top are obliquely cut. Contact sites are designated by arrows.

Fig. 5B. Cell-morphological abnormalities and the formation of tubular
aggregates in CK [–/–] muscles. Shown is an electron micrograph revealing
the different aspects of a section chosen from a darkly toluidine-blue stained
area from CK-deficient gastrocnemius muscle. Note the hyperproliferation
of tightly packed, longitudinally oriented tubes of the SR (doe more detailed
analyses see [42]).
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of the MRL +/+ substrain [55]. From study of the latter model
it is clear that appearance of TAs is genetically predisposed,
and gender (i.e. hormone) and age related. In our double
mutants we observed that terminal cisternae of the SR, which
are located in the direct surroundings of, or connected with
tubular inclusions, were heavily dilated. This suggests that
the TAs in our CK [–/–] muscles are indeed derived from the
SR. The myofibrillar compartment adjacent to the tubular
aggregates showed no structural abnormalities, and triads in
those myofibrils also appeared normal. TAs are clearly a
manifestation of disease, and almost certainly a secondary
adaptation to the abnormal cell physiological responses
evoked by CK absence. Evidently, they develop already under
normal laboratory conditions, and it will be interesting to see
whether their formation interferes with normal development,
and in turn may affect muscle strength or even cause disuse
of muscle, especially if animals are kept under regimes for
higher activity, involving more strenuous conditions for
muscle labour.

Enzymatic adaptations

To explain the changes in contractile performance of M-CK
[–/–] and CK [–/–] muscles one could postulate either direct
effects of CK absence or invoke (secondary) perturbations
in the metabolic network for production and use of high-
energy phosphoryls. This may involve changes in enzymatic
activities, concentrations, or both (see [56] for a review on
‘metabolic network flexibility’). As analyses of metabolic
flux distributions are intrinsically difficult we performed
only a merely random survey of activities of nodal enzymes
in the network directly coupled to the CK reaction. Mutant
skeletal muscle fibers may temper decreases in the free
energy of ATP hydrolysis by the transphosphorylation of
free ADP to ATP and AMP through the action of adenylate
kinase. Due to the near-equilibrium nature of this reaction,
net forward flux can be sustained by increasing substrate (i.e.
free ADP) or decreasing product (free AMP) concentrations.
AMP formed by the adenylate kinase reaction can be de-
aminated by the enzyme AMP deaminase, a tetrameric
enzyme composed of identical 80 kD subunits that catalyzes
the non-equilibrium deamination of AMP to IMP and
ammonia. IMP is largely retained within the myocyte until
subsequent reamination to AMP via the purine nucleotide
cycle [57]. The AMP deaminase reaction is thought to be
controlled, at least in part, by AMP concentration, allosteric
modulators such as ADP and inorganic phosphate and ATP
turnover associated with muscle contraction [58]. As many
of these parameters are affected in CK-mutant muscles we
studied the activity and structure of the enzyme in our mouse
models. In hindlimb muscle composed of a mixture of fiber
types, AMP deaminase activity assayed under optimal in

vitro conditions [59] was decreased ~60% in the M-CK
deficient versus wild-type muscle. When examined at low
AMP concentrations (< 0.2 mM), AMP deaminase from M-
CK deficient mice displays a marked increase in affinity
coupled with a decreased V

max
 compared with the enzyme

from wild type muscle. This kinetic behaviour is character-
istic of negative cooperativity that can be exhibited by
oligomeric enzymes and is accompanied by changes in the
apparent subunit molecular weight determined with SDS-
PAGE and Western blots. In muscle from wild-type mice,
about 80% of the immunoreactive protein was found to have
an apparent molecular mass of 80 kD. In contrast, mixed
muscle from the M-CK deficient had less than half as much
80 kD AMP deaminase protein coupled with an accumulation
of smaller species with apparent molecular weights of 60
and 56 kD (data not shown). This loss of 80 kD AMP
deaminase is consistent with the decline in in vitro activity.
Interestingly, these changes in molecular weight and enzyme
activity are also found in β-GPA treated rats [60] and may be
related to post-translational changes such as proteolysis or
covalent modifications. How the overall-purine metabolism
in functionally intact muscles, during rest and during intense
exercise, is influenced by the loss of CK isoforms and the
secondary changes in AMP deaminase structure and activity,
remains to be determined.

We postulated earlier that also at the ATP-consumption
sites in the metabolic network adaptive changes in the
profiles of enzyme-activities could be involved. Suprisingly,
however, biochemical assay of whole muscle extracts
showed that neither the activity nor the concentration of SR
Ca2+-ATPases was conspicuously different between mutants
and wild type animal. SR Ca2+-ATPase activity (expressed as
mU/mg protein; n = 3 animals each) was 76.5 ± 9.5 in wild
type, 75.5 ± 9.8 in M-CK [–/–] and 76.6 ± 10.0 in CK [–/–]
mutants. SR Ca2+-ATPase content ranged between 94.3 ± 11.0
and 95.2 ± 11.8 pmol/mg protein in these animals. We feel
that in addition to these measurements our studies should
include the analyses of SERCA- and PMCA-isoenzyme
profiles, to rule out that isoenzyme switches are involved.
This is a goal for the near future. As myosin-ATPase is the
other principal determinant of energy demand in working
muscle and alterations in myosin isoenzyme profiles could
result in shifts in intrinsic ATPase activity, shortening
velocity, and energetic economy we also studied the
myosin heavy chain isotype (MHC) distribution [61, 62].
Comparison of the MHC patterns in the representative
slow soleus muscle, intermediate type gastrocnemius and
diaphragm, and fast psoas and extensor digitorum longus
(EDL) muscle, showed that transitions in isomyosin heavy
chain types do not occur in any of these types of muscle in
ScCKmit [–/–] or, more strikingly, CK [–/–] mice. In contrast,
small but significant changes became apparent in fast muscles
from M-CK [–/–] mice. Profiles in M-CK [–/–] EDL, psoas and
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Fig. 6. Diagrams of myosin heavy chain (MHC) distribution in extracts from several muscles of a wild-type, ScCKmit [–/–], M-CK [–/–], and CK
[–/–] mouse. Electrophoretic MHC separations of (A) diaphragm, (B) soleus, (C) gastrocnemius, and (D) psoas muscle extracts were densitometrically
scanned. Figures at the left indicate the levels of specific MHC isoforms as a percentage of total (100%). Every bar represents three gels from one
muscle. Note that the shift in the MHC-profile is most prominent in M-CK [–/–] animals.

gastrocnemius display a slight fast-to-slow shift, with 40–50%
increase in MHCIId and 20–25% decrease in the MHCIIb
content, compared to wild-type and ScCKmit [–/–] and CK [–
/–] mutants (Fig. 6). Changes in MHC in cardiac atria and
ventricles were not observed for any of the mutants. As
judged from the (rather small) magnitude of changes we expect
the involvement of the MHC-ATPase isotype to play only a
minor role in altering muscle performance, perhaps more so in
the relaxation and long-term performance of skeletal muscle,
aspects which indeed differ between CK [–/–] and MCK [–/–
] mutants. Obviously, under normal laboratory conditions
there is no stringent selection on these aspects of muscle
physiology.

At this point we would like to conclude that the deviation
from the situation in wt in our mutants can be most easily
explained as a direct effect of CK loss on (local) ATP. As
many Ca2+-ATPases operate close to thermodynamic
equilibrium, this may have immediate effects on [Ca2+]

i
 levels

in muscle and evoke a cascade of secondary cellular events
[42]. In addition, the ATP supply for the myosin ATPase cycle
and actomyosin sliding may be somewhat perturbed in our
mutants. Importantly, pleiotrophic compensatory cytoarch-
itectural and enzymatic changes may obscure the phenotypic
consequences, and do so in a mutation-type and fiber-type
dependent manner. In any future studies of thresholds and
energy networks, particularly during development of our CK
mutants, we must therefore focus on obtaining a fully detailed
picture of this background. This is a challenging and lab-
ourious endeavour but the knowledge may ultimately help
us to discriminate between direct consequences of ablation
of CK functions and indirect effects which most likely
represent the fraction of phenotypic functions that cannot
be compensated by other genes and pathways.
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Materials and methods

Generation and genotyping of CK deficient mice

Procedures involved in the construction of the different
targeting vectors, transfection of wild-type ES cells and the
generation of M-CK [–/–] and ScCKmit [–/–] nullizygous mice
have been described in detail elsewhere [13, 28, 31, 63].

In vitro and in vivo measurement of CK isoenzyme and
mitochondrial enzyme activities and metabolite levels

Zymogram analyses and measurements of mitochondrial
indicator enzyme activities (cytochrome c oxidase and citrate
synthase) were done as described previously [13, 28, 31,
42]. Procedures for the extraction and concentration
measurements of creatine and adenosine metabolites have
been described [31]. In vivo 31P-NMR spectra of mouse hind
limb muscles at rest were recorded on an Oxford Instruments
magnet (4.3 T), equipped with a S.M.I.S. spectrometer, and
working at 73 MHz. Probe characteristics and experimental
conditions were essentially as described previously [28, 31,
64, 65]. pH values were calculated from the chemical shift
of the P

i
 signal as described previously [64, 65].

Physiological measurements of skeletal muscle function

Contractile characteristics and force measurements of medial
gastrocnemius muscles were performed as described in detail
elsewhere [66, 13, 31] and further assessed using three tetani
(duration 150 msec; stimulation frequency 100 Hz). Force
signals were digitized (1000 Hz) and analyzed for peak force,
time to peak force, and half time of relaxation (time for force
to fall from half to a quarter at the end of stimulation [67]).
Telemetric monitoring of heart beat rate, body core tem-
perature and gross locomotor activity was performed with the
use of a telemetry system connected to a computer data
acquisition program (Data Sciences, St. Paul, MN, USA).
After intraperitoneal surgical implantation of a transmitter
(TA10ETA-F20) mice were allowed to recover for 21 days,
during which the mice regained their initial, pre-surgical
weight. Monitoring was performed during two successive days
with light/dark periods of 14/10 h as described [43, 44].

Light microscopical, ultrastructural and biochemical
fiber typing

Cross sections of the gastrocnemius-plantaris-soleus
(GPS) muscle groups were stained according to standard
histochemical procedures as described [28]. Sample prep-

aration, pre-and post-fixation and Epon embedding was
exactly as described [28]. Ultrathin sections, double
contrasted with uranyl acetate, were examined in a Philips
electron microscope EM 301 or a JEOL TEM 1010. Details
of procedures used in the morphometric and qualitative
aspects of mitochondrial contacts sites will be published
elsewhere (Verdoodt et al. submitted). For analysis of
myosin heavy chain (MHC) composition, crude extracts
from individual muscles from a wild-type, ScCKmit [–/–],
M-CK [–/–], and CK [–/–] double mutant animals were prepared
and electrophoretic profiles on gradient polyacrylamide gels
were evaluated as described [68].

SR Ca2+-ATPase determinations

The procedures for determining activity and concentration
of SR Ca2+-ATPase (measured by Ca2+-dependent ATP
hydrolysis and steady-state phosphorylation) have been
described elsewhere [42].
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