138 research outputs found

    The “minimal boundary curve for endothermy” as a predictor of heterothermy in mammals and birds: a review

    Get PDF
    According to the concept of the “minimal boundary curve for endothermy”, mammals and birds with a basal metabolic rate (BMR) that falls below the curve are obligate heterotherms and must enter torpor. We examined the reliability of the boundary curve (on a double log plot transformed to a line) for predicting torpor as a function of body mass and BMR for birds and several groups of mammals. The boundary line correctly predicted heterothermy in 87.5% of marsupials (n = 64), 94% of bats (n = 85) and 82.3% of rodents (n = 157). Our analysis shows that the boundary line is not a reliable predictor for use of torpor. A discriminate analysis using body mass and BMR had a similar predictive power as the boundary line. However, there are sufficient exceptions to both methods of analysis to suggest that the relationship between body mass, BMR and heterothermy is not a causal one. Some homeothermic birds (e.g. silvereyes) and rodents (e.g. hopping mice) fall below the boundary line, and there are many examples of heterothermic species that fall above the boundary line. For marsupials and bats, but not for rodents, there was a highly significant phylogenetic pattern for heterothermy, suggesting that taxonomic affiliation is the biggest determinant of heterothermy for these mammalian groups. For rodents, heterothermic species had lower BMRs than homeothermic species. Low BMR and use of torpor both contribute to reducing energy expenditure and both physiological traits appear to be a response to the same selective pressure of fluctuating food supply, increasing fitness in endothermic species that are constrained by limited energy availability. Both the minimal boundary line and discriminate analysis were of little value for predicting the use of daily torpor or hibernation in heterotherms, presumably as both daily torpor and hibernation are precisely controlled processes, not an inability to thermoregulate

    Toxoplasma Effector MAF1 Mediates Recruitment of Host Mitochondria and Impacts the Host Response

    Get PDF
    Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA-) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA- strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria. © 2014 Pernas et al

    Immobilization of the white-rot fungus Anthracophyllum discolor to degrade the herbicide atrazine

    Get PDF
    Herbicides cause environmental concerns because they are toxic and accumulate in the environment, food products and water supplies. There is a need to develop safe, efficient and economical methods to remove them from the environment, often by biodegradation. Atrazine is such herbicide. White-rot fungi have the ability to degrade herbicides of potential utility. This study formulated a novel pelletized support to immobilize the white-rot fungus Anthracophyllum discolor to improve its capability to degrade the atrazine using a biopurification system (BS). Different proportions of sawdust, starch, corn meal and flaxseed were used to generate three pelletized supports (F1, F2 and F3). In addition, immobilization with coated and uncoated pelletized supports (CPS and UPS, respectively) was assessed. UPS-F1 was determined as the most effective system as it provided high level of manganese peroxidase activity and fungal viability. The half-life (t1/2) of atrazine decreased from 14 to 6 days for the control and inoculated samples respectively. Inoculation with immobilized A. discolor produced an increase in the fungal taxa assessed by DGGE and on phenoloxidase activity determined. The treatment improves atrazine degradation and reduces migration to surface and groundwater.Grant CONICYT/FONDAP/15130015Grant FONDECYT 112096

    Effects of long-term exposure to an electronic containment system on the behaviour and welfare of domestic cats

    Get PDF
    Free-roaming cats are exposed to a variety of risks, including involvement in road traffic accidents. One way of mitigating these risks is to contain cats, for example using an electronic boundary fence system that delivers an electric ‘correction’ via a collar if a cat ignores a warning cue and attempts to cross the boundary. However, concerns have been expressed over the welfare impact of such systems. Our aim was to determine if long-term exposure to an electronic containment system was associated with reduced cat welfare. We compared 46 owned domestic cats: 23 cats that had been contained by an electronic containment system for more than 12 months (AF group); and 23 cats with no containment system that were able to roam more widely (C group). We assessed the cats’ behavioural responses and welfare via four behavioural tests (unfamiliar person test; novel object test; sudden noise test; cognitive bias test) and an owner questionnaire. In the unfamiliar person test, C group lip-licked more than the AF group, whilst the AF group looked at, explored and interacted more with the unfamiliar person than C group. In the novel object test, the AF group looked at and explored the object more than C group. No significant differences were found between AF and C groups for the sudden noise or cognitive bias tests. Regarding the questionnaire, C group owners thought their cats showed more irritable behaviour and AF owners thought that their cats toileted inappropriately more often than C owners. Overall, AF cats were less neophobic than C cats and there was no evidence of significant differences between the populations in general affective state. These findings indicate that an electronic boundary fence with clear pre-warning cues does not impair the long term quality of life of cat

    Comparative Genomics of the Apicomplexan Parasites Toxoplasma gondii and Neospora caninum: Coccidia Differing in Host Range and Transmission Strategy

    Get PDF
    Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species are tissue-dwelling Coccidia and members of the phylum Apicomplexa; they share many common features, but Neospora neither infects humans nor shares the same wide host range as Toxoplasma, rather it shows a striking preference for highly efficient vertical transmission in cattle. These species therefore provide a remarkable opportunity to investigate mechanisms of host restriction, transmission strategies, virulence and zoonotic potential. We sequenced the genome of N. caninum and transcriptomes of the invasive stage of both species, undertaking an extensive comparative genomics and transcriptomics analysis. We estimate that these organisms diverged from their common ancestor around 28 million years ago and find that both genomes and gene expression are remarkably conserved. However, in N. caninum we identified an unexpected expansion of surface antigen gene families and the divergence of secreted virulence factors, including rhoptry kinases. Specifically we show that the rhoptry kinase ROP18 is pseudogenised in N. caninum and that, as a possible consequence, Neospora is unable to phosphorylate host immunity-related GTPases, as Toxoplasma does. This defense strategy is thought to be key to virulence in Toxoplasma. We conclude that the ecological niches occupied by these species are influenced by a relatively small number of gene products which operate at the host-parasite interface and that the dominance of vertical transmission in N. caninum may be associated with the evolution of reduced virulence in this species

    Dynamic Regulation of H3K27 Trimethylation during Arabidopsis Differentiation

    Get PDF
    During growth of multicellular organisms, identities of stem cells and differentiated cells need to be maintained. Cell fate is epigenetically controlled by the conserved Polycomb-group (Pc-G) proteins that repress their target genes by catalyzing histone H3 lysine 27 trimethylation (H3K27me3). Although H3K27me3 is associated with mitotically stable gene repression, a large fraction of H3K27me3 target genes are tissue-specifically activated during differentiation processes. However, in plants it is currently unclear whether H3K27me3 is already present in undifferentiated cells and dynamically regulated to permit tissue-specific gene repression or activation. We used whole-genome tiling arrays to identify the H3K27me3 target genes in undifferentiated cells of the shoot apical meristem and in differentiated leaf cells. Hundreds of genes gain or lose H3K27me3 upon differentiation, demonstrating dynamic regulation of an epigenetic modification in plants. H3K27me3 is correlated with gene repression, and its release preferentially results in tissue-specific gene activation, both during differentiation and in Pc-G mutants. We further reveal meristem- and leaf-specific targeting of individual gene families including known but also likely novel regulators of differentiation and stem cell regulation. Interestingly, H3K27me3 directly represses only specific transcription factor families, but indirectly activates others through H3K27me3-mediated silencing of microRNA genes. Furthermore, H3K27me3 targeting of genes involved in biosynthesis, transport, perception, and signal transduction of the phytohormone auxin demonstrates control of an entire signaling pathway. Based on these and previous analyses, we propose that H3K27me3 is one of the major determinants of tissue-specific expression patterns in plants, which restricts expression of its direct targets and promotes gene expression indirectly by repressing miRNA genes

    The role of DNA microarrays in Toxoplasma gondii research, the causative agent of ocular toxoplasmosis

    Get PDF
    Ocular toxoplasmosis, which is caused by the protozoan parasite Toxoplasma gondii, is the leading cause of retinochoroiditis. Toxoplasma is an obligate intracellular pathogen that replicates within a parasitophorous vacuole. Infections are initiated by digestion of parasites deposited in cat feces or in undercooked meat. Parasites then disseminate to target tissues that include the retina where they then develop into long-lived asymptomatic tissue cysts. Occasionally, cysts reactivate and growth of newly emerged parasites must be controlled by the host’s immune system or disease will occur. The mechanisms by which Toxoplasma grows within its host cell, encysts, and interacts with the host’s immune system are important questions. Here, we will discuss how the use of DNA microarrays in transcriptional profiling, genotyping, and epigenetic experiments has impacted our understanding of these processes. Finally, we will discuss how these advances relate to ocular toxoplasmosis and how future research on ocular toxoplasmosis can benefit from DNA microarrays

    Maternal Serologic Screening to Prevent Congenital Toxoplasmosis: A Decision-Analytic Economic Model

    Get PDF
    We constructed a decision-analytic and cost-minimization model to compare monthly maternal serological screening for congenital toxoplasmosis, prenatal treatment, and post-natal follow-up and treatment according to the current French protocol, versus no systematic screening or perinatal treatment. Costs are based on published estimates of lifetime societal costs of developmental disabilities and current diagnostic and treatment costs. Probabilities are based on published results and clinical practice in the United States and France. We use sensitivity analysis to evaluate robustness of results. We find that universal monthly maternal screening for congenital toxoplasmosis with follow-up and treatment, following the French (Paris) protocol, leads to savings of 620perchildscreened.Resultsarerobusttochangesintestcosts,valueofstatisticallife,seroprevalenceinwomenofchildbearingage,fetallossduetoamniocentesis,incidenceofprimaryT.gondiiinfectionduringpregnancy,andtobivariateanalysisoftestcostsandincidenceofprimaryT.gondiiinfection.Giventheparametersinthismodelandamaternalscreeningtestcostof620 per child screened. Results are robust to changes in test costs, value of statistical life, seroprevalence in women of childbearing age, fetal loss due to amniocentesis, incidence of primary T. gondii infection during pregnancy, and to bivariate analysis of test costs and incidence of primary T. gondii infection. Given the parameters in this model and a maternal screening test cost of 12, screening is cost-saving for rates of congenital infection above 1 per 10,000 live births. Universal screening according to the French protocol is cost saving for the US population within broad parameters for costs and probabilities

    Value based maternal and newborn care requires alignment of adequate resources with high value activities

    Get PDF
    Evidence based practice has been associated with better quality of care in many situations, but it has not been able to address increasing need and demand in healthcare globally and stagnant or decreasing healthcare resources. Implementation of value-based healthcare could address many important challenges in health care systems worldwide. Scaling up exemplary high value care practices offers the potential to ensure values-driven maternal and newborn care for all women and babies. Increased use of healthcare interventions over the last century have been associated with reductions in maternal and newborn mortality and morbidity. However, over an optimum threshold, these are associated with increases in adverse effects and inappropriate use of scarce resources. The Quality Maternal and Newborn Care framework provides an example of what value based maternity care might look like. To deliver value based maternal and newborn care, a system-level shift is needed, 'from fragmented care focused on identification and treatment of pathology for the minority to skilled care for all'. Ideally, resources would be allocated at population and individual level to ensure care is woman-centred instead of institution/ profession centred but oftentimes, the drivers for spending resources are 'the demands and beliefs of the acute sector'. We argue that decisions to allocate resources to high value activities, such as continuity of carer, need to be made at the macro level in the knowledge that these investments will relieve pressure on acute services while also ensuring the delivery of appropriate and high value care in the long run. To ensure that high value preventive and supportive care can be delivered, it is important that separate staff and money are allocated to, for example, models of continuity of carer to prevent shortages of resources due to rising demands of the acute services. To achieve value based maternal and newborn care, mechanisms are needed to ensure adequate resource allocation to high value maternity care activities that should be separate from the resource demands of acute maternity services. Funding arrangements should support, where wanted and needed, seamless movement of women and neonates between systems of care

    Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes

    Get PDF
    The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described
    corecore