3,774 research outputs found

    Further evidence for the planet around 51 Pegasi

    Full text link
    The discovery of the planet around the solar-type star 51 Pegasi marked a watershed in the search for extrasolar planets. Since then seven other solar-type stars have been discovered, of which several have surprisingly short orbital periods, like the planet around 51 Peg. These planets were detected using the indirect technique of measuring variations in the Doppler shifts of lines in the spectra of the primary stars. But it is possible that oscillations of the stars themselves (or other effects) could mimic the signature of the planets, particularly around the short-period planets. The apparent lack of spectral and brightness variations, however, led to widespread acceptance that there is a planet around 51 Peg. This conclusion was challenged by the observation of systematic variations in the line profile shapes of 51 Peg, which suggested stellar oscillations. If these observations are correct, then there is no need to invoke a planet around 51 Peg to explain the data. Here we report observations of 51 Peg at a much higher spectral resolution than those in ref.9, in which we find no evidence for systematic changes in the line shapes. The data are most consistent with a planetary companion to 51 Peg.Comment: LaTeX, 6 pages, 2 figures. To appear in 8 January 1998 issue of Natur

    Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories

    Get PDF
    The interplay rich between algebraic geometry and string and gauge theories has recently been immensely aided by advances in computational algebra. However, these symbolic (Gr\"{o}bner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these short-comings. Its so-called 'embarrassing parallelizability' allows us to solve many problems and extract physical information which elude the symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.Comment: 36 page

    Heterotic domain wall solutions and SU(3) structure manifolds

    Full text link
    We examine compactifications of heterotic string theory on manifolds with SU(3) structure. In particular, we study N = 1/2 domain wall solutions which correspond to the perturbative vacua of the 4D, N =1 supersymmetric theories associated to these compactifications. We extend work which has appeared previously in the literature in two important regards. Firstly, we include two additional fluxes which have been, heretofore, omitted in the general analysis of this situation. This allows for solutions with more general torsion classes than have previously been found. Secondly, we provide explicit solutions for the fluxes as a function of the torsion classes. These solutions are particularly useful in deciding whether equations such as the Bianchi identities can be solved, in addition to the Killing spinor equations themselves. Our work can be used to straightforwardly decide whether any given SU(3) structure on a six-dimensional manifold is associated with a solution to heterotic string theory. To illustrate how to use these results, we discuss a number of examples taken from the literature.Comment: 34 pages, minor corrections in second versio

    The impact of endogenous annexin A1 on glucocorticoid control of in ammatory arthritis

    Get PDF
    This work was supported by a Wellcome Trust (UK) project grant 083551. SMO is funded by Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (Grant 2011/00128-1) and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Grant 302768/2010-6)

    Numerical elimination and moduli space of vacua

    Get PDF
    We propose a new computational method to understand the vacuum moduli space of (supersymmetric) field theories. By combining numerical algebraic geometry (NAG) and elimination theory, we develop a powerful, efficient, and parallelizable algorithm toextract important information such as the dimension, branch structure, Hilbert series and subsequent operator counting, as well as variation according to coupling constants and mass parameters. We illustrate this method on a host of examples from gauge theory, string theory, and algebraic geometry

    The Lore of Low Methane Livestock:Co-Producing Technology and Animals for Reduced Climate Change Impact

    Get PDF
    Methane emissions from sheep and cattle production have gained increasing profile in the context of climate change. Policy and scientific research communities have suggested a number of technological approaches to mitigate these emissions. This paper uses the concept of co-production as an analytical framework to understand farmers’ evaluation of a 'good animal’. It examines how technology and sheep and beef cattle are co-produced in the context of concerns about the climate change impact of methane. Drawing on 42 semi-structured interviews, this paper demonstrates that methane emissions are viewed as a natural and integral part of sheep and beef cattle by farmers, rather than as a pollutant. Sheep and beef cattle farmers in the UK are found to be an extremely heterogeneous group that need to be understood in their specific social, environmental and consumer contexts. Some are more amenable to appropriating methane reducing measures than others, but largely because animals are already co-constructed from the natural and the technical for reasons of increased production efficiency

    Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels

    Get PDF
    Swimming micro robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming micro organisms, micro robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro robots, hydrodynamic characteristics of the flow field must be understood well. This work presents computational fluid dynamics (CFD) modeling and analysis of the flow due to the motion of micro robots that consist of magnetic heads and helical tails inside fluid-filled channels akin to bodily conduits; special emphasis is on the effects of the radial position of the robot. Time-averaged velocities, forces, torques, and efficiency of the micro robots placed in the channels are analyzed as functions of rotation frequency, helical pitch (wavelength) and helical radius (amplitude) of the tail. Results indicate that robots move faster and more efficiently near the wall than at the center of the channel. Forces acting on micro robots are asymmetrical due to the chirality of the robot’s tail and its motion. Moreover, robots placed near the wall have a different flow pattern around the head when compared to in-center and unbounded swimmers. According to simulation results, time-averaged for-ward velocity of the robot agrees well with the experimental values measured previously for a robot with almost the same dimensions

    Foot pain and foot health in an educated population of adults: results from the Glasgow Caledonian University Alumni Foot Health Survey

    Get PDF
    Abstract Background Foot pain is common amongst the general population and impacts negatively on physical function and quality of life. Associations between personal health characteristics, lifestyle/behaviour factors and foot pain have been studied; however, the role of wider determinants of health on foot pain have received relatively little attention. Objectives of this study are i) to describe foot pain and foot health characteristics in an educated population of adults; ii) to explore associations between moderate-to-severe foot pain and a variety of factors including gender, age, medical conditions/co-morbidity/multi-morbidity, key indicators of general health, foot pathologies, and social determinants of health; and iii) to evaluate associations between moderate-to-severe foot pain and foot function, foot health and health-related quality-of-life. Methods Between February and March 2018, Glasgow Caledonian University Alumni with a working email address were invited to participate in the cross-sectional electronic survey (anonymously) by email via the Glasgow Caledonian University Alumni Office. The survey was constructed using the REDCap secure web online survey application and sought information on presence/absence of moderate-to-severe foot pain, patient characteristics (age, body mass index, socioeconomic status, occupation class, comorbidities, and foot pathologies). Prevalence data were expressed as absolute frequencies and percentages. Multivariate logistic and linear regressions were undertaken to identify associations 1) between independent variables and moderate-to-severe foot pain, and 2) between moderate-to-severe foot pain and foot function, foot health and health-related quality of life. Results Of 50,228 invitations distributed, there were 7707 unique views and 593 valid completions (median age [inter-quartile range] 42 [31–52], 67.3% female) of the survey (7.7% response rate). The sample was comprised predominantly of white Scottish/British (89.4%) working age adults (95%), the majority of whom were overweight or obese (57.9%), and in either full-time or part-time employment (82.5%) as professionals (72.5%). Over two-thirds (68.5%) of the sample were classified in the highest 6 deciles (most affluent) of social deprivation. Moderate-to-severe foot pain affected 236/593 respondents (39.8%). High body mass index, presence of bunions, back pain, rheumatoid arthritis, hip pain and lower occupation class were included in the final multivariate model and all were significantly and independently associated with moderate-to-severe foot pain (p < 0.05), except for rheumatoid arthritis (p = 0.057). Moderate-to-severe foot pain was significantly and independently associated lower foot function, foot health and health-related quality of life scores following adjustment for age, gender and body mass index (p < 0.05). Conclusions Moderate-to-severe foot pain was highly prevalent in a university-educated population and was independently associated with female gender, high body mass index, bunions, back pain, hip pain and lower occupational class. Presence of moderate-to-severe foot pain was associated with worse scores for foot function, foot health and health-related quality-of-life. Education attainment does not appear to be protective against moderate-to-severe foot pain

    A powerful bursting radio source towards the Galactic Centre

    Full text link
    Transient astronomical sources are typically powered by compact objects and usually signify highly explosive or dynamic events. While radio astronomy has an impressive record of obtaining high time resolution observations, usually it is achieved in quite narrow fields-of-view. Consequently, the dynamic radio sky is poorly sampled, in contrast to the situation in the X- and gamma-ray bands in which wide-field instruments routinely detect transient sources. Here we report a new transient source, GCRT J1745-3009, detected in 2002 during a moderately wide-field radio transient monitoring program of the Galactic center (GC) region at 0.33 GHz. The characteristics of its bursts are unlike those known for any other class of radio transient. If located in or near the GC, its brightness temperature (~10^16 K) and the implied energy density within GCRT J1745-3009 vastly exceeds that observed in most other classes of radio astronomical sources, and is consistent with coherent emission processes rarely observed. We conclude that GCRT J1745-3009 is the first member of a new class of radio transient sources, the first of possibly many new classes to be identified through current and upcoming radio surveys.Comment: 16 pages including 3 figures. Appears in Nature, 3 March 200
    corecore