We examine compactifications of heterotic string theory on manifolds with
SU(3) structure. In particular, we study N = 1/2 domain wall solutions which
correspond to the perturbative vacua of the 4D, N =1 supersymmetric theories
associated to these compactifications. We extend work which has appeared
previously in the literature in two important regards. Firstly, we include two
additional fluxes which have been, heretofore, omitted in the general analysis
of this situation. This allows for solutions with more general torsion classes
than have previously been found. Secondly, we provide explicit solutions for
the fluxes as a function of the torsion classes. These solutions are
particularly useful in deciding whether equations such as the Bianchi
identities can be solved, in addition to the Killing spinor equations
themselves. Our work can be used to straightforwardly decide whether any given
SU(3) structure on a six-dimensional manifold is associated with a solution to
heterotic string theory. To illustrate how to use these results, we discuss a
number of examples taken from the literature.Comment: 34 pages, minor corrections in second versio