124 research outputs found

    Jet pumps for thermoacoustic applications: design guidelines based on a numerical parameter study

    Get PDF
    The oscillatory flow through tapered cylindrical tube sections (jet pumps) is characterized by a numerical parameter study. The shape of a jet pump results in asymmetric hydrodynamic end effects which cause a time-averaged pressure drop to occur under oscillatory flow conditions. Hence, jet pumps are used as streaming suppressors in closed-loop thermoacoustic devices. A two-dimensional axisymmetric computational fluid dynamics model is used to calculate the performance of a large number of conical jet pump geometries in terms of time-averaged pressure drop and acoustic power dissipation. The investigated geometrical parameters include the jet pump length, taper angle, waist diameter and waist curvature. In correspondence with previous work, four flow regimes are observed which characterize the jet pump performance and dimensionless parameters are introduced to scale the performance of the various jet pump geometries. The simulation results are compared to an existing quasi-steady theory and it is shown that this theory is only applicable in a small operation region. Based on the scaling parameters, an optimum operation region is defined and design guidelines are proposed which can be directly used for future jet pump design.Comment: The following article has been accepted by the Journal of the Acoustical Society of America. After it is published, it will be found at http://scitation.aip.org/JAS

    A numerical investigation on the vortex formation and flow separation of the oscillatory flow in jet pumps

    Get PDF
    A two-dimensional computational fluid dynamics model is used to predict the oscillatory flow through a tapered cylindrical tube section (jet pump) placed in a larger outer tube. Due to the shape of the jet pump, there will exist an asymmetry in the hydrodynamic end effects which will cause a time-averaged pressure drop to occur that can be used to cancel Gedeon streaming in a closed-loop thermoacoustic device. The performance of two jet pump geometries with different taper angles is investigated. A specific time-domain impedance boundary condition is implemented in order to simulate traveling acoustic wave conditions. It is shown that by scaling the acoustic displacement amplitude to the jet pump dimensions, similar minor losses are observed independent of the jet pump geometry. Four different flow regimes are distinguished and the observed flow phenomena are related to the jet pump performance. The simulated jet pump performance is compared to an existing quasi-steady approximation which is shown to only be valid for small displacement amplitudes compared to the jet pump length.Comment: The following article has been accepted by the Journal of the Acoustical Society of America. After it is published, it will be found at: http://scitation.aip.org/JAS

    Acoustic characteristics of a ported shroud turbocompressor operating at design conditions

    Full text link
    [EN] In this article, the acoustic characterisation of a turbocharger compressor with ported shroud design is carried out through the numerical simulation of the system operating under design conditions of maximum isentropic efficiency. While ported shroud compressors have been proposed as a way to control the flow near unstable conditions in order to obtain a more stable operation and enhance deep surge margin, it is often assumed that the behaviour under stable design conditions is characterised by a smooth, non-detached flow that matches an equivalent standard compressor. Furthermore, research is scarce regarding the acoustic effects of the ported shroud addition, especially under the design conditions. To analyse the flow field evolution and its relation with the noise generation, spectral signatures using statistical and scale-resolving turbulence modelling methods are obtained after successfully validating the performance and acoustic predictions of the numerical model with experimental measurements. Propagation of the frequency content through the ducts has been estimated with the aid of pressure decomposition methods to enhance the content coming from the compressor. Expected acoustic phenomena such as `buzz-sawÂż tones, blade passing peaks and broadband noise are correctly identified in the modelled spectrum. Analysis of the flow behaviour in the ported shroud shows rotating structures through the slot that may impact the acoustic and vibration response. Further inspection of the pressure field through modal decomposition confirms the influence of the ported shroud cavity in noise generation and propagation, especially at lower frequencies, suggesting that further research should be carried out on the impact these flow enhancement solutions have on the noise emission of the turbocharger.The project was sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). The authors would like to thank BorgWarner Turbo Systems for permission to publish the results presented in this article. The support of the HPC group at the University of Huddersfield is gratefully acknowledged.Sharma, S.; Broatch, A.; Garcia Tiscar, J.; Allport, JM.; Nickson, AK. (2020). Acoustic characteristics of a ported shroud turbocompressor operating at design conditions. International Journal of Engine Research. 21(8):1454-1468. https://doi.org/10.1177/1468087418814635S14541468218Sundström, E., Semlitsch, B., & Mihăescu, M. (2017). Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors. Flow, Turbulence and Combustion, 100(3), 705-719. doi:10.1007/s10494-017-9877-zGonzalez, A., Ferrer, M., de Diego, M., Piñero, G., & Garcia-Bonito, J. . (2003). Sound quality of low-frequency and car engine noises after active noise control. Journal of Sound and Vibration, 265(3), 663-679. doi:10.1016/s0022-460x(02)01462-1Brizon, C. J. da S., & Bauzer Medeiros, E. (2012). Combining subjective and objective assessments to improve acoustic comfort evaluation of motor cars. Applied Acoustics, 73(9), 913-920. doi:10.1016/j.apacoust.2012.03.013Teng, C., & Homco, S. (2009). Investigation of Compressor Whoosh Noise in Automotive Turbochargers. SAE International Journal of Passenger Cars - Mechanical Systems, 2(1), 1345-1351. doi:10.4271/2009-01-2053Figurella, N., Dehner, R., Selamet, A., Tallio, K., Miazgowicz, K., & Wade, R. (2014). Noise at the mid to high flow range of a turbocharger compressor. Noise Control Engineering Journal, 62(5), 306-312. doi:10.3397/1/376229Torregrosa, A. J., Broatch, A., Margot, X., GarcĂ­a-TĂ­scar, J., Narvekar, Y., & Cheung, R. (2017). Local flow measurements in a turbocharger compressor inlet. Experimental Thermal and Fluid Science, 88, 542-553. doi:10.1016/j.expthermflusci.2017.07.007Broatch, A., Galindo, J., Navarro, R., GarcĂ­a-TĂ­scar, J., Daglish, A., & Sharma, R. K. (2015). Simulations and measurements of automotive turbocharger compressor whoosh noise. Engineering Applications of Computational Fluid Mechanics, 9(1), 12-20. doi:10.1080/19942060.2015.1004788Raitor, T., & Neise, W. (2008). Sound generation in centrifugal compressors. Journal of Sound and Vibration, 314(3-5), 738-756. doi:10.1016/j.jsv.2008.01.034Galindo, J., Tiseira, A., Navarro, R., & LĂłpez, M. A. (2015). Influence of tip clearance on flow behavior and noise generation of centrifugal compressors in near-surge conditions. International Journal of Heat and Fluid Flow, 52, 129-139. doi:10.1016/j.ijheatfluidflow.2014.12.004Broatch, A., Galindo, J., Navarro, R., & GarcĂ­a-TĂ­scar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006Semlitsch, B., & Mihăescu, M. (2016). Flow phenomena leading to surge in a centrifugal compressor. Energy, 103, 572-587. doi:10.1016/j.energy.2016.03.032Sundström, E., Semlitsch, B., & Mihăescu, M. (2018). Acoustic signature of flow instabilities in radial compressors. Journal of Sound and Vibration, 434, 221-236. doi:10.1016/j.jsv.2018.07.040Torregrosa, A. J., Broatch, A., Margot, X., & GarcĂ­a-TĂ­scar, J. (2016). Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition. Journal of Sound and Vibration, 376, 60-71. doi:10.1016/j.jsv.2016.04.035Nicoud, F., & Ducros, F. (1999). Flow, Turbulence and Combustion, 62(3), 183-200. doi:10.1023/a:1009995426001Chow, P., Cross, M., & Pericleous, K. (1996). A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application. Applied Mathematical Modelling, 20(2), 170-183. doi:10.1016/0307-904x(95)00156-eKaji, S., & Okazaki, T. (1970). Generation of sound by rotor-stator interaction. Journal of Sound and Vibration, 13(3), 281-307. doi:10.1016/s0022-460x(70)80020-7Sivagnanasundaram, S., Spence, S., & Early, J. (2013). Map Width Enhancement Technique for a Turbocharger Compressor. Journal of Turbomachinery, 136(6). doi:10.1115/1.4007895Aubry, N. (1991). On the hidden beauty of the proper orthogonal decomposition. Theoretical and Computational Fluid Dynamics, 2(5-6), 339-352. doi:10.1007/bf00271473Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9LIANG, Y. C., LEE, H. P., LIM, S. P., LIN, W. Z., LEE, K. H., & WU, C. G. (2002). PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY. Journal of Sound and Vibration, 252(3), 527-544. doi:10.1006/jsvi.2001.4041Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. doi:10.1002/wics.101Nikiforov, V. (2007). The energy of graphs and matrices. Journal of Mathematical Analysis and Applications, 326(2), 1472-1475. doi:10.1016/j.jmaa.2006.03.07

    Design and operation of a Rayleigh Ohnesorge Jetting Extensional Rheometer (ROJER) to study extensional properties of low viscosity polymer solutions

    Get PDF
    The Rayleigh Ohnesorge Jetting Extensional Rheometer (ROJER) enables measurement of very short relaxation times of low viscosity complex fluids such as those encountered in ink-jet printing and spraying applications. This paper focuses on the design and operation of the ROJER. The performance of two nozzle designs are compared using Newtonian fluids alongside a study using computational fluid dynamics (CFD). Subsequently a disposable nozzle is developed that overcomes issues of blockage and cleaning. The operability of this design is subject to a focused study where low viscosity polymer solutions are characterised. The test fluid materials are ethyl hydroxy-ethyl cellulose (EHEC) and poly ethylene oxide (PEO) mixed with water/glycerol solutions. Results obtained by the disposable nozzle are encouraging, paving the way for a more cost-efficient and robust ROJER setup

    Mechanical collision simulation of potato tubers

    Get PDF
    This paper presents the results of an investigation on internal stress progression and the explicit dynamics simulation of the bruising behavior of potato tubers under dynamic mechanical collision. Physical measurements, mechanical tests, advanced solid modeling, and engineering simulation techniques were utilized in the study. The tuber samples used in the simulation were reverse engineered and finite element analysis (FEA) was set up to simulate the collision-based bruising behavior of the potato tubers. The total number of identical tuber models used in the simulation was 17. The numerical data of the FEA results revealed useful stress distribution and mechanical behavior visuals. These results are presented in a frame that can be used to describe bruise susceptibility value on potato-like agricultural crops. The modulus of elasticity was calculated from compression test data as 3.12 MPa. Structural stresses of 1.40 and 3.13 MPa on the impacting (hitting) and impacted (hit) tubers (respectively) were obtained. These stress values indicate that bruising is likely to occur on the tubers. This research paper provides a useful how-to-do strategy to further research on complicated bruising investigations of solid-like agricultural products through advanced engineering simulation techniques. Practical applications: This research aims to simulate realistic dynamic deformation of potato tubers during mechanical collision, which is very hard to achieve through physical or analytical expressions. This is attractive because related food processing industries have shown their interest in determining the physical properties and bruising behavior of food/agricultural products using experimental, numerical, and engineering simulation methods so that it can be used in their food processing technology. Very limited data have been found available in the literature about the subject of FEM-based explicit dynamics simulation of solid-like agricultural crops such as the self-collision case of potato tubers (which is very important for indoor or outdoor potato processing). Comparative investigations on determination of modulus of elasticity are very limited as well. Most of the research focused on single calculation theory and linear static loading assumption-based FEM simulation solutions. Here, we report a “how-to-do” case study for dynamic self-collision simulation of potato tubers

    Predictions of Heat Transfer and Flow Circulations in Differentially Heated Liquid Columns With Applications to Low-Pressure Evaporators

    Get PDF
    Numerical computations are presented for the temperature and velocity distributions of two differentially heated liquid columns with liquor depths of 0.1 m and 2.215 m, respectively. The temperatures in the liquid columns vary considerably with respect to position for pure conduction, free convection, and nucleate boiling cases using one-dimensional (1D) thermal resistance networks. In the thermal resistance networks the solutions are not sensitive to the type of condensing and boiling heat transfer coefficients used. However, these networks are limited and give no indication of velocity distributions occurring within the liquor. To alleviate this issue, two-dimensional (2D) axisymmetric and three-dimensional (3D) computational fluid dynamics (CFD) simulations of the test rigs have been performed. The axisymmetric conditions of the 2D simulations produce unphysical solutions; however, the full 3D simulations do not exhibit these behaviors. There is reasonable agreement for the predicted temperatures, heat fluxes, and heat transfer coefficients when comparing the boiling case of the 1D thermal resistance networks and the CFD simulations
    • 

    corecore