2,246 research outputs found

    Testate amoebae (Protozoa: Testacea) as bioindicators in the Late Quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia

    Get PDF
    Testate amoebae (Protozoa: Testacea) were studied in the Late Quaternary permafrost depositsin the Siberian Arctic (Bykovsky Peninsula of the Laptev Sea coast, 71º40'-71º80'N and 129º-129º30'E). The studied Testacea associations reflect specific environmental conditions in paleocryosols,which were controlled by the local micro-relief as well as regional climate conditions. Totally, 86species, varieties, and forms of testate amoebae were found in 38 Pleistocene and Holocenesamples. The rhizopods indicate that soil conditions at ca 53,000 14C yr BP were probably rathersimilar to the modern cold and wet arctic tundra environment. More moisture and warmer soilconditions were relatively favourable for rhizopods ca 45,300-43,000 14C yr BP, but significantlydrier at about 42,000 14C yr BP. Drier and colder environmental conditions were also presentabout 39,300-35,000 14C yr BP. The Late Pleistocene samples, radiocarbon dated to 33,000-12,000 yr BP, are characterized by a low species diversity and density. This period may have beenextremely cold and dry, which is also supported by the polymorphism of some species.Hydrophilic Difflugia species (mostly obligate hydrobiotes) are broadly represented in theHolocene samples. The species composition and density of rhizopods in the majority of Holocenesamples suggest wet and relatively warm conditions. Changes in rhizopod assemblages during thelast 53,000 years were not very dramatic, mostly consisting of rare species and changes in thedominant species complexes during the Pleistocene and Holocene. However, these changes weremore drastic during the Pleistocene. They, probably, were at least partly responsible for thedisappearance of some rare testacean species such as Argynnia sp

    Nonlocal Andreev reflection at high transmissions

    Full text link
    We analyze non-local effects in electron transport across three-terminal normal-superconducting-normal (NSN) structures. Subgap electrons entering S-electrode from one N-metal may form Cooper pairs with their counterparts penetrating from another N-metal. This phenomenon of crossed Andreev reflection -- combined with normal scattering at SN interfaces -- yields two different contributions to non-local conductance which we evaluate non-perturbatively at arbitrary interface transmissions. Both these contributions reach their maximum values at fully transmitting interfaces and demonstrate interesting features which can be tested in future experiments.Comment: 4 pages, 4 figure

    Crossed Andreev reflection at spin-active interfaces

    Full text link
    With the aid of the quasiclassical Eilenberger formalism we develop a theory of non-local electron transport across three-terminal ballistic normal-superconducting-normal (NSN) devices with spin-active NS interfaces. The phenomenon of crossed Andreev reflection (CAR) is known to play the key role in such transport. We demonstrate that CAR is highly sensitive to electron spins and yields a rich variety of properties of non-local conductance which we describe non-perturbatively at arbitrary voltages, temperature, spin-dependent interface transmissions and their polarizations. Our results can be applied to multi-terminal hybrid structures with normal, ferromagnetic and half-metallic electrodes and can be directly tested in future experiments.Comment: 11 pages, 7 figures; figures 6 and 7 are corrected; version published in Phys. Rev.

    Shot noise and Coulomb blockade of Andreev reflection

    Full text link
    We derive low energy effective action for a short coherent conductor between normal (N) and superconducting (S) reservoirs. We evaluate interaction correction δG\delta G to Andreev conductance and demonstrate a close relation between Coulomb effects and shot noise in NS systems. In the diffusive limit doubling of both shot noise power and charge of the carriers yields δG|\delta G| four times bigger than in the normal case. Our predictions can be directly tested in future experiments.Comment: 4 pages, 2 figure

    Russian arctic lakes as climate archives : pollen-based reconstruction of the Late Quaternary climate

    Get PDF

    Coastal permafrost landscape development since the Late Pleistocene in the western Laptev Sea, Siberia

    Get PDF
    The palaeoenvironmental development of the western Laptev Sea is understood primarily from investigations of exposed cliffs and surface sediment cores from the shelf. In 2005, a core transect was drilled between the Taymyr Peninsula and the Lena Delta, an area that was part of the westernmost region of the non-glaciated Beringian landmass during the late Quaternary. The transect of five cores, one terrestrial and four marine, taken near Cape Mamontov Klyk reached 12km offshore and 77m below sea level. A multiproxy approach combined cryolithological, sedimentological, geochronological (C-14-AMS, OSL on quartz, IR-OSL on feldspars) and palaeoecological (pollen, diatoms) methods. Our interpretation of the proxies focuses on landscape history and the transition of terrestrial into subsea permafrost. Marine interglacial deposits overlain by relict terrestrial permafrost within the same offshore core were encountered in the western Laptev Sea. Moreover, the marine interglacial deposits lay unexpectedly deep at 64m below modern sea level 12km from the current coastline, while no marine deposits were encountered onshore. This implies that the position of the Eemian coastline presumably was similar to today's. The landscape reconstruction suggests Eemian coastal lagoons and thermokarst lakes, followed by Early to Middle Weichselian fluvially dominated terrestrial deposition. During the Late Weichselian, this fluvial landscape was transformed into a poorly drained accumulation plain, characterized by widespread and broad ice-wedge polygons. Finally, the shelf plain was flooded by the sea during the Holocene, resulting in the inundation and degradation of terrestrial permafrost and its transformation into subsea permafrost

    Berry phase in Heisenberg representation

    Get PDF
    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system

    Minigap, Parity Effect and Persistent Currents in SNS Nanorings

    Get PDF
    We have evaluated a proximity-induced minigap in the density of states (DOS) of SNS junctions and SNS nanorings at an arbitrary concentration of non-magnetic impurities. We have demonstrated that an isotropic energy minigap in the electron spectrum opens up already at arbitrarily weak disorder, while angle resolved DOS at higher energies can remain strongly anisotropic. The minigap value ϵg\epsilon_g can be tuned by passing a supercurrent through an SNS junction or by applying a magnetic flux Φ\Phi to an SNS ring. A non-monotonous dependence of ϵg\epsilon_g on Φ\Phi has been found at weak disorder. We have also studied persistent currents in isolated SNS nanorings. For odd number of electrons in the ring we have found a non-trivial current-phase (current-flux) relation which -- at relatively high disorder -- may lead to a π\pi-junction state and spontaneous currents in the ground state of the system.Comment: 7 pages, 8 figure
    corecore