234 research outputs found

    Emissions Relationships in Western Forest Fire Plumes: I. Reducing the Effect of Mixing Errors on Emission Factors

    Get PDF
    Studies of emission factors from biomass burning using aircraft data complement the results of lab studies and extend them to conditions of immense hot conflagrations. We illustrate and discuss emission relationships for 422 individual samples from many forest-fire plumes in the Western US. The samples are from two NASA investigations: ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys). This work provides sample-by-sample enhancement ratios (EnRs) for 23 gases and particulate properties. Many EnRs provide candidates for emission ratios (ERs, corresponding to the EnR at the source) when the origin and degree of transformation is understood and appropriate. From these, emission factors (EFs) can be estimated when the fuel dry mass consumed is known or can be estimated using the carbon mass budget approach. This analysis requires understanding the interplay of mixing of the plume with surrounding air. Some initial examples emphasize that measured C(tot) = CO2 + CO in a fire plume does not necessarily describe the emissions of the total carbon liberated in the flames, C(burn). Rather, it represents C(tot) = C(burn) + C(bkgd), which includes possibly varying background concentrations for entrained air. Consequently, we present a simple theoretical description for plume entrainment for multiple tracers from flame to hundreds of kilometers downwind and illustrate some intrinsic linear behaviors. The analysis suggests a Mixed Effects Regression Emission Technique (MERET), which can eliminate occasional strong biases associated with the commonly used normalized excess mixing ratio (NEMR) method. MERET splits C(tot) to reveal C(burn) by exploiting the fact that C(burn) and all tracers respond linearly to dilution, while each tracer has consistent EnR behavior (slope of tracer concentration with respect to C(burn)). The two effects are separable. Two or three or preferably more emission indicators are required as a minimum; here we used ten. Limited variations in the EnRs for each tracer can be incorporated and the variations and co-variations analyzed. The percentage CO yield (or the modified combustion efficiency) plays some role. Other co-relationships involving nitrogen and organic classes are more prominent; these have strong relationships to the C(burn) to O3 emission relationship. In summary, MERET allows fine spatial resolution (EnRs for individual observations) and comparison of similar plumes distant in time and space. Alkene ratios provide us with an approximate photochemical timescale. This allows discrimination and definition, by fire situation, of ERs, allowing us to estimate emission factors

    Nitrous oxide in the deep waters of the world's oceans

    Get PDF
    We present a compilation and analysis Of N2O data from the deep-water zone of the oceans below 2000 m. The N2O values show an increasing trend from low concentrations in the North Atlantic Ocean to high concentrations in the North Pacific Ocean, indicating an accumulation of N2O in deep waters with time. We conclude that the observed N2O accumulation is mainly caused by nitrification in the global deep-water circulation system (i.e., the “conveyor belt”). Hydrothermal and sedimentary N2O fluxes are negligible. We estimate the annual N2O deep-water production to be 0.3 ± 0.1 Tg. Despite the fact that the deep sea below 2000 m represents about 95% of the total ocean volume, it contributes only about 3–16% to the global open-ocean N2O production. A rough estimate of the oceanic N2O budget suggests that the loss to the atmosphere is not balanced by the deep-sea nitrification and pelagic denitrification. Therefore an additional source of 3.8 Tg N2O yr−1 attributed to nitrification in the upper water column (0–2000 m) might exist. With a simple model we estimated the effect of changes in the North Atlantic Deep Water (NADW) formation for deep-water N2O. The upper water N2O budget is not significantly influenced by variations in the N2O deep-water formation. However, the predicted decrease in the NADW formation rate in the near future might lead to an additional source of atmospheric N2O in the range of about 0.02-0.4 Tg yr−1. This (anthropogenically induced) source is small, and it will be difficult to detect its signal against the natural variations in the annual growth rates of tropospheric N2O

    Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    Get PDF
    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to reactive organic

    A comprehensive network of measuring stations to monitor climate change

    Get PDF
    The atmospheric CO2 concentration and temperature have been rather stable at the time scale of millennia, although rather large variations have occurred during longer periods. The extensive use of fossil fuels and destruction of forests have recently increased the atmospheric CO2 concentrations. Temperature and circulation of water on the globe are reacting to the increase in the atmospheric CO2 concentration. Mankind urgently needs knowledge on the present climate change and on its effects on living nature. We propose that a network of comprehensive measuring stations should be constructed, utilizing modem technology to provide documentation of the climate change and data for research related to it. To be able to cover spatial and temporal variations, a hierarchy of stations is needed

    Greenhouse gases in cold water filaments in the Arabian Sea during the Southwest Monsoon

    Get PDF
    The distribution of partial pressure of carbon dioxide and the concentrations of nitrous oxide and methane were investigated in a cold water filament near the coastal upwelling region off Oman at the beginning of the southwest monsoon in 1997. The results suggest that such filaments are regions of intense biogeochemical activity which may affect the marine cycling of climatically relevant trace gase

    Airborne measurements of biomass burning products over Africa

    Get PDF
    Ozone has been observed in elevated concentrations by satellites over hitherto believed 'background' areas. There is meteorological evidence that these ozone 'plumes' found over the Atlantic ocean originate from biomass fires on the African continent. Therefore we have investigated ozone and assumed precursor compounds over African regions. The measurements revealed large photosmog layers in altitudes between 1.5 and 4 km. Here we will focus on some results of ozone mixing ratios obtained during the DECAFE 91/FOS experiment and estimate the relevance of biomass burning as a source by comparing the strength of this source to stratospheric input

    Dimethylsulfide oxidation over the tropical South Atlantic: OH and other oxidants

    Get PDF
    The general course of events in the formation of a marine cloud begins with the emission of species which can eventually serve as nuclei around which water can condense to form a cloud droplet. In remote marine regions, cloud condensation nuclei (CCN) are primarily composed of sulfate, in either its acid or ammonium salt form. Most sulfate in these regions is the product of atmospheric oxidation of dimethyl sulfide (DMS), a reduced sulfur gas that is released by phytoplankton at the ocean surface. Therefore, in order to effectively quantify the links in the cloud-formation cycle, one must begin with a well-defined description of the atmospheric chemistry of DMS. The intent of this project has been to initiate development of a comprehensive model of the chemistry and dynamics responsible for the formation of clouds in the remote marine boundary layer. The primary tool in this work has been the Global/Regional Atmospheric Chemistry Event Simulator (GRACES), a global atmospheric chemistry model, which is under development within the Atmospheric Chemistry and Dynamics Branch of NASA-Ames Research Center. In this effort, GRACES was used to explore the first chemical link between DMS and sulfate by modeling the diurnal variation of DMS
    • 

    corecore