15,248 research outputs found

    Memory effects on the statistics of fragmentation

    Full text link
    We investigate through extensive molecular dynamics simulations the fragmentation process of two-dimensional Lennard-Jones systems. After thermalization, the fragmentation is initiated by a sudden increment to the radial component of the particles' velocities. We study the effect of temperature of the thermalized system as well as the influence of the impact energy of the ``explosion'' event on the statistics of mass fragments. Our results indicate that the cumulative distribution of fragments follows the scaling ansatz F(m)mαexp[(m/m0)γ]F(m)\propto m^{-\alpha}\exp{[-(m/m_0)^\gamma]}, where mm is the mass, m0m_0 and γ\gamma are cutoff parameters, and α\alpha is a scaling exponent that is dependent on the temperature. More precisely, we show clear evidence that there is a characteristic scaling exponent α\alpha for each macroscopic phase of the thermalized system, i.e., that the non-universal behavior of the fragmentation process is dictated by the state of the system before it breaks down.Comment: 5 pages, 8 figure

    The XMM spectral catalog of SDSS optically selected Seyfert 2 galaxies

    Full text link
    We present an X-ray spectroscopic study of optically selected (SDSS) Seyfert 2 (Sy2) galaxies. The goal is to study the obscuration of Sy2 galaxies beyond the local universe, using good quality X-ray spectra in combination with high S/N optical spectra for their robust classification. We analyzed all available XMM-Newton archival observations of narrow emission line galaxies that meet the above criteria in the redshift range 0.05<z<0.35. We initially selected narrow line AGN using the SDSS optical spectra and the BPT classification diagram. We further modeled and removed the stellar continuum, and we analyzed the residual emission line spectrum to exclude any possible intermediate-type Seyferts. Our final catalog comprises 31 Sy2 galaxies with median redshift z~0.1. X-ray spectroscopy is performed using the available X-ray spectra from the 3XMM and the XMMFITCAT catalogs. Implementing various indicators of obscuration, we find seven (~23%) Compton-thick AGN. The X-ray spectroscopic Compton-thick classification agrees with other commonly used diagnostics, such as the X-ray to mid-IR luminosity ratio and the X-ray to [OIII] luminosity ratio. Most importantly, we find four (~13%) unobscured Sy2 galaxies, at odds with the simplest unification model. Their accretion rates are significantly lower than the rest of our Sy2 sample, in agreement with previous studies that predict the absence of the broad line region below a certain Eddington ratio threshold.Comment: 12 pages, 6 figures, accepted for publication in A&

    Molecular gas in AzTEC/C159: a star-forming disk galaxy 1.3 Gyr after the Big Bang

    Get PDF
    We studied the molecular gas properties of AzTEC/C159, a star-forming disk galaxy at z = 4.567, in order to better constrain the nature of the high-redshift end of the submillimeter-selected galaxy (SMG) population. We secured ^(12)CO molecular line detections for the J = 2 →1 and J = 5 →4 transitions using the Karl G. Jansky Very Large Array (VLA) and the NOrthern Extended Millimeter Array (NOEMA) interferometer. The broad (FWHM ~ 750 km s^(−1)) and tentative double-peaked profiles of the two ^(12)CO lines are consistent with an extended molecular gas reservoir, which is distributed in a rotating disk, as previously revealed from [CII] 158 μm line observations. Based on the 12CO(2 →1) emission line, we derived L′_(CO)=(3.4±0.6)×10^(10) K km s^(−1) pc^2, which yields a molecular gas mass of M_(H2)(α_(CO)/4.3)=(1.5±0.3)×10^(11) M⊙ and unveils a gas-rich system with μ_(gas)(α_(CO)/4.3)≡M_(H2)/M⋆=3.3±0.7. The extreme star formation efficiency of AzTEC/C159, parametrized by the ratio L_(IR)/L′_(CO)=(216±80) L⊙ (K km s^(−1) pc^2)^(−1), is comparable to merger-driven starbursts such as local ultra-luminous infrared galaxies and SMGs. Likewise, the ^(12)CO(5 →4)/CO(2 →1) line brightness temperature ratio of r_(52)= 0.55 ± 0.15 is consistent with high-excitation conditions as observed in SMGs. Based on mass budget considerations, we constrained the value for the L′_(CO) – H_2 mass conversion factor in AzTEC/C159, that is, α_(CO)=3.9_(−1.3)^(+2.7) M⊙ K^(−1) km^(−1) s pc^(−2), which is consistent with a self-gravitating molecular gas distribution as observed in local star-forming disk galaxies. Cold gas streams from cosmological filaments might be fueling a gravitationally unstable gas-rich disk in AzTEC/C159, which breaks into giant clumps and forms stars as efficiently as in merger-driven systems and generates high gas excitation. These results support the evolutionary connection between AzTEC/C159-like systems and massive quiescent disk galaxies at z ~ 2

    Localization properties of a tight-binding electronic model on the Apollonian network

    Get PDF
    An investigation on the properties of electronic states of a tight-binding Hamiltonian on the Apollonian network is presented. This structure, which is defined based on the Apollonian packing problem, has been explored both as a complex network, and as a substrate, on the top of which physical models can defined. The Schrodinger equation of the model, which includes only nearest neighbor interactions, is written in a matrix formulation. In the uniform case, the resulting Hamiltonian is proportional to the adjacency matrix of the Apollonian network. The characterization of the electronic eigenstates is based on the properties of the spectrum, which is characterized by a very large degeneracy. The 2π/32\pi /3 rotation symmetry of the network and large number of equivalent sites are reflected in all eigenstates, which are classified according to their parity. Extended and localized states are identified by evaluating the participation rate. Results for other two non-uniform models on the Apollonian network are also presented. In one case, interaction is considered to be dependent of the node degree, while in the other one, random on-site energies are considered.Comment: 7pages, 7 figure

    Teleparallel Equivalent of Non-Abelian Kaluza-Klein Theory

    Get PDF
    Based on the equivalence between a gauge theory for the translation group and general relativity, a teleparallel version of the non-abelian Kaluza-Klein theory is constructed. In this theory, only the fiber-space turns out to be higher-dimensional, spacetime being kept always four-dimensional. The resulting model is a gauge theory that unifies, in the Kaluza-Klein sense, gravitational and gauge fields. In contrast to the ordinary Kaluza-Klein models, this theory defines a natural length-scale for the compact sub-manifold of the fiber space, which is shown to be of the order of the Planck length.Comment: Revtex4, 7 pages, no figures, to appear in Phys. Rev.

    Importance of Granular Structure in the Initial Conditions for the Elliptic Flow

    Full text link
    We show effects of granular structure of the initial conditions (IC) of hydrodynamic description of high-energy nucleus-nucleus collisions on some observables, especially on the elliptic-flow parameter v2. Such a structure enhances production of isotropically distributed high-pT particles, making v2 smaller there. Also, it reduces v2 in the forward and backward regions where the global matter density is smaller, so where such effects become more efficacious.Comment: 4 pages, 5 figure

    Efficient formalism for large scale ab initio molecular dynamics based on time-dependent density functional theory

    Get PDF
    A new "on the fly" method to perform Born-Oppenheimer ab initio molecular dynamics (AIMD) is presented. Inspired by Ehrenfest dynamics in time-dependent density functional theory, the electronic orbitals are evolved by a Schroedinger-like equation, where the orbital time derivative is multiplied by a parameter. This parameter controls the time scale of the fictitious electronic motion and speeds up the calculations with respect to standard Ehrenfest dynamics. In contrast to other methods, wave function orthogonality needs not be imposed as it is automatically preserved, which is of paramount relevance for large scale AIMD simulations.Comment: 5 pages, 3 color figures, revtex4 packag
    corecore