1,144 research outputs found
The Complex Topology of Chemical Plants
We show that flowsheets of oil refineries can be associated to complex
network topologies that are scale-free, display small-world effect and possess
hierarchical organization. The emergence of these properties from such man-made
networks is explained as a consequence of the currently used principles for
process design, which include heuristics as well as algorithmic techniques. We
expect these results to be valid for chemical plants of different types and
capacities.Comment: 7 pages, 5 figures and 1 tabl
Ametryn leaching on Red-Yellow Latosol and Red-Yellow Ultisol with different pH values
Objetivou-se com este trabalho avaliar o potencial de lixiviação do ametryn num Argissolo Vermelho-Amarelo e num Latossolo Vermelho-Amarelo utilizados com pastagens no Brasil, com diferentes valores de pH. Para isso, foram avaliados 120 tratamentos (quatro solos associados a três intensidades de chuva e 10 profundidades), em parcela subdividida no delineamento inteiramente casualizado, com três repetições. Colunas de PVC de 50 cm de comprimento por 10 cm de diâmetro foram preenchidas com os solos e umedecidas; em seguida, aplicou-se o herbicida e simularam-se chuvas no topo delas, nas intensidades especificadas de acordo com o tratamento. Após 72 horas, todas as colunas foram dispostas na posição horizontal e abertas longitudinalmente, coletando-se amostras dos solos a cada intervalo de 5 cm de profundidade, para posterior extração e quantificação do herbicida e análise por cromatografia líquida de alta eficiência - CLAE. Posteriormente, no restante das amostras de solo, semeou-se ao longo de cada coluna a espécie indicadora Cucumis sativus. Concluiu-se que solos com baixo teor de matéria orgânica e/ou pH mais elevado apresentaram maiores índices de lixiviação do ametryn. Além disso, o método do bioensaio foi mais eficiente na confirmação da lixiviação do ametryn em comparação à CLAE.The objective of this work was to evaluate ametryn leaching potential in soil used for pasture in Brazil (Red-Yellow Latosol (LVA) and Red-Yellow Ultisol (PVA)) with different pH values. Thus, 120 treatments were evaluated (four soils related to three rainfall intensities and 10 soil column depths). The experiments were arranged in a completely randomized design in split-plots and three replications. PVC columns of 10 cm diameter by 50 cm length were filled with the soil samples, moistened and placed upright for 48 hours to drain the excess water. The herbicide was applied and rainfall was simulated on top of the columns at intensities specified according to the treatment. After 72 hours, the columns were opened longitudinally, placed in a horizontal position and soil samples were collected at each 5 cm interval depth for posterior herbicide extraction and quantification by liquid chromatography (HPLC). The remaining soil columns were sown with the indicator species (Cucumis sativus) in the substrate along the opening to evaluate ametryn leaching. After 21days of emergence, evaluations were conducted to verify the intoxication symptoms caused by ametryn in the plants. It was concluded that soils with low organic matter content and/or higher pH showed higher ametryn leaching rates, and that the bioassay method was more efficient in confirming ametryn leaching than liquid chromatography
The inflammatory stimulus of a natural latex biomembrane improves healing in mice
The aim of the present study was to compare healing obtained with biomembranes with the natural healing process (sham) using biochemical and immunohistological assays. C57BL/6 mice were divided into 4 groups of 15 mice each and received different subcutaneous implants: natural latex biomembrane (NLB), denatured latex (DL), expanded polytetrafluorethylene (ePTFE), or sham. On the 2nd, 7th, and 14th days post-treatment, 5 mice per group were sacrificed and biopsied for the following measurements: oxidative stress based on malondialdehyde (MDA), myeloperoxidase (MPO) and hydrogen peroxide by the method of ferrous oxidation-xylenol orange (FOX), as well as glutathione and total proteins; histological evaluation to enumerate inflammatory cells, fibroblasts, blood vessels, and collagen, and immunohistochemical staining for inducible nitric oxide synthase, interleukin-1β, vascular endothelial growth factor (VEGF), and transforming growth factor-β1 (TGF-β1). On day 2 post-treatment, NLB stimulated a dense inflammatory infiltrate mainly consisting of polymorphonuclear cells, as indicated by increased MPO (P < 0.05), but oxidative stress due to MDA was not observed until the 7th day (P < 0.05). The number of blood vessels was greater in NLB (P < 0.05) and DL (P < 0.05) mice compared to sham animals on day 14. NLB induced fibroplasia by day 14 (P < 0.05) with low expression of TGF-β1 and collagenesis. Thus, NLB significantly induced the inflammatory phase of healing mediated by oxidative stress, which appeared to influence the subsequent phases such as angiogenesis (with low expression of VEGF) and fibroplasia (independent of TGF-β1) without influencing collagenesis
Research of Gravitation in Flat Minkowski Space
In this paper it is introduced and studied an alternative theory of
gravitation in flat Minkowski space. Using an antisymmetric tensor, which is
analogous to the tensor of electromagnetic field, a non-linear connection is
introduced. It is very convenient for studying the perihelion/periastron shift,
deflection of the light rays near the Sun and the frame dragging together with
geodetic precession, i.e. effects where angles are involved. Although the
corresponding results are obtained in rather different way, they are the same
as in the General Relativity. The results about the barycenter of two bodies
are also the same as in the General Relativity. Comparing the derived equations
of motion for the -body problem with the Einstein-Infeld-Hoffmann equations,
it is found that they differ from the EIH equations by Lorentz invariant terms
of order .Comment: 28 page
Quantum Yang-Mills gravity in flat space-time and effective curved space-time for motions of classical objects
Yang-Mills gravity with translational gauge group T(4) in flat space-time
implies a simple self-coupling of gravitons and a truly conserved
energy-momentum tensor. Its consistency with experiments crucially depends on
an interesting property that an `effective Riemannian metric tensor' emerges in
and only in the geometric-optics limit of the photon and particle wave
equations. We obtain Feynman rules for a coupled graviton-fermion system,
including a general graviton propagator with two gauge parameters and the
interaction of ghost particles. The equation of motion of macroscopic objects,
as an N-body system, is demonstrated as the geometric-optics limit of the
fermion wave equation. We discuss a relativistic Hamilton-Jacobi equation with
an `effective Riemann metric tensor' for the classical particles.Comment: 20 pages, to be published in "The European Physical Journal -
Plus"(2011). The final publication is available at http://www.epj.or
Current status of turbulent dynamo theory: From large-scale to small-scale dynamos
Several recent advances in turbulent dynamo theory are reviewed. High
resolution simulations of small-scale and large-scale dynamo action in periodic
domains are compared with each other and contrasted with similar results at low
magnetic Prandtl numbers. It is argued that all the different cases show
similarities at intermediate length scales. On the other hand, in the presence
of helicity of the turbulence, power develops on large scales, which is not
present in non-helical small-scale turbulent dynamos. At small length scales,
differences occur in connection with the dissipation cutoff scales associated
with the respective value of the magnetic Prandtl number. These differences are
found to be independent of whether or not there is large-scale dynamo action.
However, large-scale dynamos in homogeneous systems are shown to suffer from
resistive slow-down even at intermediate length scales. The results from
simulations are connected to mean field theory and its applications. Recent
work on helicity fluxes to alleviate large-scale dynamo quenching, shear
dynamos, nonlocal effects and magnetic structures from strong density
stratification are highlighted. Several insights which arise from analytic
considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue
"Magnetism in the Universe" (ed. A. Balogh
Estimation of solar prominence magnetic fields based on the reconstructed 3D trajectories of prominence knots
We present an estimation of the lower limits of local magnetic fields in
quiescent, activated, and active (surges) promineces, based on reconstructed
3-dimensional (3D) trajectories of individual prominence knots. The 3D
trajectories, velocities, tangential and centripetal accelerations of the knots
were reconstructed using observational data collected with a single
ground-based telescope equipped with a Multi-channel Subtractive Double Pass
imaging spectrograph. Lower limits of magnetic fields channeling observed
plasma flows were estimated under assumption of the equipartition principle.
Assuming approximate electron densities of the plasma n_e = 5*10^{11} cm^{-3}
in surges and n_e = 5*10^{10} cm^{-3} in quiescent/activated prominences, we
found that the magnetic fields channeling two observed surges range from 16 to
40 Gauss, while in quiescent and activated prominences they were less than 10
Gauss. Our results are consistent with previous detections of weak local
magnetic fields in the solar prominences.Comment: 14 pages, 12 figures, 1 tabl
Disorder and thermally driven vortex-lattice melting in La{2-x}Sr{x}CuO{4} crystals
Magnetization measurements in La{2-x}Sr{x}CuO{4} crystals indicate vortex
order-disorder transition manifested by a sharp kink in the second
magnetization peak. The transition field exhibits unique temperature
dependence, namely a strong decrease with temperature in the entire measured
range. This behavior rules out the conventional interpretation of a
disorder-driven transition into an entangled vortex solid phase. It is shown
that the transition in La{2-x}Sr{x}CuO{4} is driven by both thermally- and
disorder-induced fluctuations, resulting in a pinned liquid state. We conclude
that vortex solid-liquid, solid-solid and solid to pinned-liquid transitions
are different manifestations of the same thermodynamic order-disorder
transition, distinguished by the relative contributions of thermal and
disorder-induced fluctuations.Comment: To be published in phys. Rev. B Rapid Com
Electron Dynamics in NdCeCuO: Evidence for the Pseudogap State and Unconventional c-axis Response
Infrared reflectance measurements were made with light polarized along the a-
and c-axis of both superconducting and antiferromagnetic phases of electron
doped NdCeCuO. The results are compared to
characteristic features of the electromagnetic response in hole doped cuprates.
Within the CuO planes the frequency dependent scattering rate,
1/, is depressed below 650 cm; this behavior is a
hallmark of the pseudogap state. While in several hole doped compounds the
energy scales associated with the pseudogap and superconducting states are
quite close, we are able to show that in NdCeCuO
the two scales differ by more than one order of magnitude. Another feature of
the in-plane charge response is a peak in the real part of the conductivity,
, at 50-110 cm which is in sharp contrast with the
Drude-like response where is centered at . This
latter effect is similar to what is found in disordered hole doped cuprates and
is discussed in the context of carrier localization. Examination of the c-axis
conductivity gives evidence for an anomalously broad frequency range from which
the interlayer superfluid is accumulated. Compelling evidence for the pseudogap
state as well as other characteristics of the charge dynamics in
NdCeCuO signal global similarities of the cuprate
phase diagram with respect to electron and hole doping.Comment: Submitted to PR
Constructions of algebraic lattices
In this work we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2, 3, 4, 6, 8 and 12, which are rotated versions of the lattices Λn, for n = 2,3,4,6,8 and K12. These algebraic lattices are constructed through twisted canonical homomorphism via ideals of a ring of algebraic integers. Mathematical subject classification: 18B35, 94A15, 20H10.49350
- …
