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Abstract. In this work we present constructions of algebraic lattices in Euclidean space with

optimal center density in dimensions 2, 3, 4, 6, 8 and 12, which are rotated versions of the

lattices 3n , for n = 2, 3, 4, 6, 8 and K12. These algebraic lattices are constructed through twisted
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1 Introduction

The classical sphere packing problem, still unsolved even today, is to find out

how densely a large number of identical spheres can be packed together. To

state this another way, consider a large empty region, such as an aircraft hangar,

and ask what is the greatest number of ball bearings that can be packed into

this region. If instead of ball bearings we try to pack identical wooden cubes

the answer becomes easy. But spheres do not fit together so well as cubes, and

there is always some wasted space in between. No matter how cleverly the ball

bearings are arranged, about one quarter of the space will not be used.
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Elementary number theory has been very useful to the development of error

correcting codes in the early age of coding theory and the theory of Euclidian

lattices became of great interest for the design of dense signal constellations

well suited for transmission over AWGN channel. Furthermore, algebraic num-

ber theory has been very useful in mathematical tool that enables the design

of good coding schemes for the fading channels (wireless communications).

Algebraic lattices defined over algebraic number fields have been studied in

several papers and from different points of view [1-7]. Giraud and Belfiore [8]

proposed a technique for constructing signal sets suitable for the Rayleigh fad-

ing channel. The basic idea was to use lattice rotations to increase diversity,

that is, the number of different values in the components of any two distinct

points of the constellation. Boutros et al. [9] constructed rotated versions of

lattices D4, K12 and 36 via ideals of Q(ζn), for n = 8, 21 and 40, respectively.

Bayer-Fluckiger [1-7] constructed rotated versions of lattices Ap−1, where p is

an odd prime number, D4, E6, E8, K12, 324 and Craig’s lattices A(k)
p . Thus,

having the construction of rotated lattices as our goal, in this work we present

algebraic lattices in Euclidean space with optimal center density in dimensions

2, 3, 4, 6, 8 and 12 making use of the twisted canonical homomorphism.

This work is organized as follows. In Section 2, we present basic results of

algebraic number fields and lattices. In Section 3, we present results about alge-

braic lattices making use of the twisted canonical homomorphism σα and exam-

ples of algebraic lattices with optimal center density in dimensions 2, 3, 4, 6, 8

and 12. Finally, in Section 4, we give ours conclusions.

2 Basic results

In this section, we present some results of algebraic number theory and lattices

[10, 11] that are important to the development of the next section.

2.1 Algebraic number theory

LetL be an algebraic number field, i.e., L is an algebraic extension ofQ of finite

degree n, and therefore [L : Q] = n.
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Definition 2.1. An element β ∈ L is called an algebraic integer if there

exists a monic polynomial non-zero f (x) with coefficients in Z such that

f (β) = 0. The set OL = {β ∈ L : β is an algebraic integer} is a ring called

ring of algebraic integers in L.

Let OL be the ring of algebraic integers of L. It can be shown that OL has a

basis {x1, x2, . . . , xn} over Z called an integral basis of L.

Definition 2.2. Let A be a non-zero ideal of OL. The norm of the ideal A is

defined as the number of elements of the quotient ring OL/A, i.e., NL(A) =

|OL/A|.

Definition 2.3. Let σ1, σ2, . . . , σn be the monomorphisms of L in C. The

trace and the norm of an element β ∈ L over Q are defined, respectively,

by

TrL(β) =
n∑

i=1

σi (β) and NL(β) =
n∏

i=1

σi (β).

The discriminant of L overQ is defined by

DL = D(x1, x2, . . . , xn) = det
1≤i, j≤n

(σi (x j ))
2,

where {x1, x2, . . . , xn} is an integral basis of L.

2.2 Packing lattice

In this section we present basic facts about packing lattices. The classical prob-

lem of the sphere packing consists in to find identical spheres in Rn such that

the proportion of the space that is occupied by the spheres is optimal.

Definition 2.4. An additive subgroup 3 ⊆ Rn is a lattice if there exists a basis

B = {x1, x2, ∙ ∙ ∙ , xn} in Rn such that

3 =

{

x ∈ Rn : x =
n∑

i=1

ai xi , with ai ∈ Z, for i = 1, 2, ∙ ∙ ∙ , n

}

.

The set B is called a Z-basis of the lattice 3.

Let 3 ⊂ Rn be a lattice with Z-basis B = {x1, x2, ∙ ∙ ∙ , xn}.
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Definition 2.5. The set

PB =

{

x ∈ Rn : x =
n∑

i=1

λi xi , 0 ≤ λi < 1, for i = 1, 2, ∙ ∙ ∙ , n

}

,

is called fundamental region of 3 with respect to basis B.

Definition 2.6. The volume of the lattice 3 is defined as the module of de-

terminant of the matrix M = (xi j )
n
i, j=1, where xi = (xi1, xi2, ∙ ∙ ∙ , xin), for

i = 1, 2, ∙ ∙ ∙ , n, and denoted by Vol(3) = | det(M)|. The matrix M is called

a generator matrix for the lattice 3.

For obtain optimal packing lattices we need to find spheres whose centers

are points of a lattice 3 and that the intersection of any two spheres is only

a point. For the determination of the radius of these spheres, note that fixed

k > 0, the intersection of the compact set {x ∈ Rn; |x | ≤ k} with the lattice 3 is

a finite set. Therefore the number t = min{|x |; x ∈ 3, x 6= 0} is well defined.

Furthermore, ρ(3) = t/2 is the greatest radius such that it is possible to obtain

a packing lattice. If B(ρ(3)) is the sphere with center in the origin and radius

ρ(3) then the packing density of 3 is defined by

1(3) =
Vol(B(ρ(3)))

Vol(3)
= Vol(B(1))ρ(3)n 1

Vol(3)
,

where δ(3) = ρ(3)n/Vol(3) is called the center density of the lattice 3.

3 Algebraic lattice

The connections between lattices and algebraic number fields have been studied

by many authors from Minkowski onwards [1-7]. In this section, we define

the twisted canonical homomorphism [3, 5], and we present some results about

algebraic lattices. Furthermore, we present some examples of algebraic lattices

in Rn with optimal center density.

Let L be an algebraic number field of degree n and OL be the ring of alge-

braic integers of L. Let σ j : L → C be the n distinct monomorphisms of L.

If σ j (L) ⊆ R, say that σ j is real, case contrary, σ j is called imaginary. If all the

monomorphisms are reals, L is called a totally real field and if all the monomor-

phisms are imaginary, L is called a totally complex field. If ϕ : C → C is the
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complex conjugation then for all j = 1, 2, . . . , n, it follows that ϕ ◦ σ j = σk,

for some k = 1, 2, . . . , n, and that σ j = σk if and only if σ j (L) ⊂ R.

Hence if r1 is the number of indices such that σ j (L) ⊂ R, we can ordered

the monomorphisms σ1, σ2, . . . , σn of such manner that σ1, σ2, . . . , σr1 are the

real monomorphisms and that σr1+r2+ j = σr1+ j , for j = 1, . . . , r2. Hence

n − r1 is an even number and it can be write as r1 + 2r2 = n.

Definition 3.1 [3, 5]. The twisted canonical homomorphism σα : L −→ Rn

is defined by

σα(x) =
(

√
α1σ1(x), . . . ,

√
αr1σr1(x), <

(√
αr1+1σr1+1(x)

)
, . . .

. . . , <
(√

αr1+r2σr1+r2(x)
)
, =

(√
αr1+r2σr1+r2(x)

)
)

,

where α, x ∈ L, σi (α) ∈ R and αi = σi (α) > 0, for i = 1, 2, . . . , r1 + r2, and

the notations <(β) and =(β) are the real and imaginary parts of the complex

number β, respectively.

In the Definition 3.1 taking α = 1 we have that σ1 is the canonical homomor-

phism (or Minkowski) [10]. By Bayer-Fluckiger [3], it follows that σα(A) is an

algebraic lattice in Rn , where A ⊆ OL is an ideal. By Samuel [10] it follows

that the volume of σα(A) is given by

Vol
(
σα(A)

)
=

√
α1α2 . . . αr1αr1+1αr1+2 . . . αr1+r2(2i)−r2

∣
∣
∣
∣ det
1≤ j, k≤n

(
σ j (xk)

)
∣
∣
∣
∣ ,

where x1, x2, ∙ ∙ ∙ , xn is a Z-basis of A. Furthermore, if L is a totally real field

(or totally complex) then the volume of σα(A) is given by

Vol
(
σα(A)

)
= 2−r2NL(α)

1
2

∣
∣
∣
∣ det
1≤ j, k≤n

(
σ j (xk)

)
∣
∣
∣
∣ .

Let L be a totally real number field (or totally complex) of finite degree n,DL

be the discriminant of L and OL be the ring of algebraic integers in L.

Proposition 3.2 [10]. IfA is a non-zero ideal ofOL then the volume of σα(OL)

and the volume of σα(A) are given, respectively, by

Vol
(
σα(OL)

)
= 2−r2 |NL(α)DL|

1
2 and

Vol
(
σα(A)

)
= 2−r2 |NL(α)DL|

1
2NL(A).
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Proof. We have that Vol(σα(OL)) = 2−r2 |NL(α)DL|
1
2 , because DL =

det(σi (xk))
2, where {x1, x2, . . . , xn} is a Z-basis of OL. For the second for-

mula, since OL/A is isomorph to σα(OL)/σα(A) it follows that σα(A) is an

additive subgroup of σα(OL) of index NL(A). Furthermore, since a funda-

mental domain of σα(A) is a disjoint union of NL(A) copies of a fundamental

domain of σα(OL) it follows that Vol(σα(A)) = Vol(σα(OL))NL(A) and

consequently Vol(σα(A)) = 2−r2 |NL(α)DL|
1
2NL(A).

By Conway and Sloane [11] we have that if x ∈ L then

|σα(x)|2 = cα TrL(αxx),

where cα = 1 if L is a totally real field, cα = 1
2 if L is a totally complex

field and x is the complex conjugate of the element x . Therefore ρ(σα(A)) =
1
2 min{|σα(A)| : x ∈ A, x 6= 0} = 1

2 min{
√

cα TrL(αxx) : x ∈ A, x 6= 0},

where A is an ideal of OL.

Proposition 3.3. If A is a non-zero ideal of OL then thecenter density of the

lattice σα(A) is given by

δ(σα(A)) =
1

2n|NL(α)DL|1/2

tαn/2

NL(A)
,

where tα = min{TrL(αxx) : x ∈ A, x 6= 0}.

Proof. Let tα = min{TrL(αxx), x ∈ A, x 6= 0}. If L is a totally real field

then

δ(σα(A)) =
ρ(σα(A))

Vol(σα(A))
=

(√
tα

2

)n

|NL(α)DL|
1
2NL(A)

=

(√
tα
4

)n

|NL(α)DL|
1
2NL(A)

=

(
tα
4

) n
2

|NL(α)DL|
1
2NL(A)

=
1

2n|NL(α)DL|
1
2

tαn/2

NL(A)
,
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and if L is a totally complex field then

δ(σα(A)) =
ρ(σα(A))

Vol(σα(A))
=





√
1
2 tα

2





n

2
−n
2 |NL(α)DL|

1
2NL(A)

=

2
n
2 tα

n
2

2
3n
2

|NL(α)DL|
1
2NL(A)

=

tα
n
2

2n

|NL(α)DL|
1
2NL(A)

=

tα
n
2

(
√

4)n

|NL(α)DL|
1
2NL(A)

=

tα
n
2

4
n
2

|NL(α)DL|
1
2NL(A)

=

(
tα
4

) n
2

|NL(α)DL|
1
2NL(A)

=
1

2n|NL(α)DL|
1
2

tαn/2

NL(A)
.

Therefore the center density is the same in both cases.

Example 3.4. If L = Q(ζ6), where ζ6 is a primitive 6-th root of unity, α = 2

and A = (1 − ζ6)OL is an ideal of OL = Z[ζ6], then [L : Q] = 2, DL = −3,

NL(α) = 4 and NL(A) = 1. If x ∈ A then x = (a0 + a1ζ6)(1 − ζ6),

with a0, a1 ∈ Z, and thus TrL(αxx) = 4(a2
0 + a2

1 + a0a1). Therefore, tα =

min{TrL(αxx) : x ∈ A, x 6= 0} = 4, with a0 = 1 and a1 = 0, and the center

density of the lattice σα(A) is given by

δ(σα(A)) =
1

2n|NL(α)DL|
1
2

tn/2
α

NL(A)

=
1

2
√

3
,

which is the optimal center density for this dimension, i.e., with the same center

density of the lattice 32.

Similarly, in the next table, we have that the lattice σα(A), whereA is an ideal

of OL = Z[ζ6], has the same center density that the hexagonal lattice A2 ' 32.

Comp. Appl. Math., Vol. 29, N. 3, 2010
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A NL(A) α NL(α) tα

±OL, ±ζ6OL, ±
(
1 − ζ6

)
OL 1 4 2 4

±
(
2 − ζ6

)
OL, ±

(
1 − 2ζ6

)
OL 3 4 16 24

±2OL, ±2ζ6OL, ±
(
2 − 2ζ6

)
OL 4 5 25 40

±
(
3 − 2ζ6

)
OL, ±

(
1 + 2ζ6

)
OL 7 3 9 42

Example 3.5 [12]. The polynomial p(x) = x3 − 6x2 + 9x − 1 is irreducible

over Q. Since p(0) = −1, p(1) = 5, p(3) = −1 and p(4) = 3, it follows

that the roots of p(x) are reals. Let x1, x2 and x3 be the roots of p(x) and

L = Q(x1). If 3 is a lattice with basis e1 = (x1, x2, x3), e2 = (x3, x1, x2) and

e3 = (x2, x3, x1), then

M =






x1 x2 x3

x3 x1 x2

x2 x3 x1






is the generator matrix of the lattice 3 and det(M) = 54. Furthermore, if x ∈ 3

then x = a1e1 + a2e2 + a3e3, with a1, a2, a3 ∈ Z. Thus |x |2 = 18(a2
1 + a2

2 +

a2
3 + a1a2 + a1a3 + a2a3), and therefore t = min{|x |; x ∈ 3, x 6= 0} =

√
18,

with a1 = 1 and a2 = a3 = 0. Hence the center density of the lattice 3 is

given by

δ(3) =
(

t

2

)3 1

| det(M)|
=

1

4
√

2
,

which is the optimal center density for this dimension, i.e., with the same center

density of the lattice 33. In general, if p(x) = x3 + ax2 + bx + c is irreducible

over Q, where a, b, c ∈ Z, a2 = 4b and c(27c + 4a3 − 18ab) < 0, then the

lattice 3 has the same center density that the lattice A3 ' D3 ' 33.

Example 3.6. If L = Q(ζ8), where ζ8 is a primitive 8-th root of unity, A =

(ζ8 + ζ 2
8)OL is an ideal of OL = Z[ζ8] and α = 3 − 2(ζ8 + ζ−1

8 ) ∈ OL,

then [L : Q] = 4, DL = 256, NL(A) = 2 and NL(α) = 1. If x ∈ A then

x = (ζ8 + ζ 2
8)(a0 + a1ζ8 + a2ζ

2
8 + a3ζ

3
8), with a0, a1, a2, a3 ∈ Z, and thus

TrL
(
αxx

)
= 8

(
a2

0 − a0a1 + a2
1 − a1a2 + a2

2 + a0a3 − a2a3 + a2
3

)
.
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Hence tα = min{TrL(αxx) : x ∈ A, x 6= 0} = 8, with a0 = 1 and a1 = a2 =

a3 = 0, and therefore the center density of the lattice σα(A) is given by

δ(σα(A)) =
1

2n|NL(α)DL|
1
2

tαn/2

NL(A)
=

1

8
,

which is the optimal center density for this dimension, i.e., with the same center

density of lattice 34.

Similarly, in the next table, we have that the lattice σα(A), where A is an

ideal of OL = Z[ζ8], has the same center density that the lattice D4 ' 34.

A NL(A) α NL(α) tα

±
(
− 1 + ζ8

2 + ζ8
3
)
OL, 1

2 −
(
ζ8 + ζ−1

8

)
,

4 8
±

(
1 + ζ8 − ζ8

3
)
OL 10 − 7

(
ζ8 + ζ−1

8

)

±
(
1 − 2ζ8 + 2ζ8

2 − ζ8
3
)
OL, 2 6 + 4

(
ζ8 + ζ−1

8

)
16 16

±
(
ζ8 − ζ8

2
)
OL

±
(
1 + ζ8

2
)
OL, 4

2 +
(
ζ8 + ζ−1

8

)
,

4 16
±

(
ζ8 − 2ζ8

2 + ζ8
3
)
OL 10 + 7

(
ζ8 + ζ−1

8

)

±
(
− 3 + ζ8 + ζ8

2 − 3ζ8
3
)
OL, 8 6 + 4

(
ζ8 + ζ−1

8

)
16 32

±
(
1 − ζ8 + ζ8

2 − ζ8
3
)
OL

±
(
ζ8 − ζ8

2 − ζ8
3
)
OL, 9

2 +
(
ζ8 + ζ−1

8

)
,

4 24
±

(
2 − 2ζ8 + ζ8

3
)
OL 10 + 7

(
ζ8 + ζ−1

8

)

±
(
2 + 2ζ8 − ζ8

3
)
OL, 16

2 −
(
ζ8 + ζ−1

8

)
,

4 32
±

(
2ζ8 + 2ζ8

2 + 2ζ8
3
)
OL 10 − 7

(
ζ8 + ζ−1

8

)

Example 3.7. If L = Q(ζ9), where ζ9 is a primitive 9-th root of unity, A =

(1−ζ9−ζ9
2−ζ9

4−ζ9
5)OL is an ideal ofOL = Z[ζ9] and α = 4+2ζ9

2+2ζ9
−2 ∈

OL, then n = [L : Q] = 6, DL = 39, NL(A) = 9 and NL(α) = 64. If x ∈ A

then x = (1 − ζ9 − ζ9
2 − ζ9

4 − ζ9
5)(a0 + a1ζ9 + a2ζ9

2 + a3ζ9
3 + a4ζ9

4 + a5ζ9
5),

where a0, ∙ ∙ ∙ , a5 ∈ Z, and thus TrL(αxx) = 72a2
0 +72a0a1 +72a2

1 +36a0a2 +

72a1a2+72a2
2 −72a0a3+36a1a3+72a2a3+72a2

3 −108a0a4−72a1a4+36a2a4+

72a3a4 + 72a2
4 − 108a0a5 − 108a1a5 − 72a2a5 + 36a3a5 + 72a4a5 + 72a2

5 .

Comp. Appl. Math., Vol. 29, N. 3, 2010
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Hence tα = min{TrL(αxx) : x ∈ A, x 6= 0} = 36, with a0 = a4 = −1,

a1 = a3 = a5 = 0 and a2 = 1, and therefore the center density of the lattice

σα(A) is given by

δ(σα(A)) =
1

2n|NL(α)DL|
1
2

tαn/2

NL(A)
=

1

8
√

3
,

which is the optimal center density for this dimension, i.e., with the same center

density of the lattice 36.

Similarly, in the next table, we have that the lattice σα(A), whereA is an ideal

of OL = Z[ζ9], has the same center density that the lattice E6 ' 36.

A NL(A) α NL(α) tα

±
(
1−ζ9

4−ζ9
5
)
OL 1 3−

(
ζ9+ζ−1

9

)
+

(
ζ9

2+ζ9
−2

)
81 18

±
(
ζ9

2+ζ9
4+ζ9

5
)
OL 3 5−3

(
ζ9+ζ−1

9

)
+2

(
ζ9

2+ζ9
−2

)
9 18

±
(
ζ9

3+ζ9
4+ζ9

5
)
OL 9 2−

(
ζ9+ζ−1

9

)
−

(
ζ9

2+ζ9
−2

)
1 18

±
(
1+ζ9−ζ9

3−ζ9
4
)
OL 27 3−

(
ζ9+ζ−1

9

)
−2

(
ζ9

2+ζ9
−2

)
81 54

±
(
1−ζ9−ζ9

3+ζ9
4
)
OL 81 5−3

(
ζ9+ζ−1

9

)
+2

(
ζ9

2+ζ9
−2

)
9 54

Example 3.8. If L = Q(ζ20), where ζ20 is a primitive 20-th root of unity,

A = (2 + 2ζ20 − ζ 3
20 + ζ 4

20 + ζ 5
20 − ζ 6

20 − ζ 7
20)OL is an ideal of OL = Z[ζ20] and

α = 5+5(ζ20 +ζ−1
20 )+5(ζ 2

20 +ζ−2
20 )+3(ζ 3

20 +ζ−3
20 ) ∈ OL, then n = [L : Q] = 8,

DL = 2856, NL(A) = 16 and NL(α) = 25. If x ∈ A then x = (2 + 2ζ20 −

ζ 3
20+ζ 4

20+ζ 5
20−ζ 6

20−ζ 7
20)(a0+a1ζ20+a2ζ

2
20+a3ζ

3
20+a4ζ

4
20+a5ζ

5
20+a6ζ

6
20+a7ζ

7
20),

where a0, ∙ ∙ ∙ , a7 ∈ Z, and thus TrL(αx x̄) = 1552a2
0 + 2944a0a1 + 1552a2

1 +

2496a0a2 +2944a1a2 +1552a2
2 +1808a0a3 +2496a1a3 +2944a2a3 +1552a2

3 +

944a0a4 +1808a1a4 +2496a2a4 +2944a3a4 +1552a2
4 +944a1a5 +1808a2a5 +

2496a3a5 +2944a4a5 +1552a2
5 −944a0a6 +944a2a6 +1808a3a6 +2496a4a6 +

2944a5a6 + 1552a2
6 − 1648a0a7 − 840a1a7 + 32a2a7 + 912a3a7 + 1704a4a7 +

2336a5a7 + 2760a6a7 + 1360a2
7 . Hence tα = min

{
TrL(αx x̄) : x ∈ A, x 6=

0
}

= 40, with a0 = a3 = 0, a1 = a5 = a6 = −1 and a2 = a4 = a7 = 1, and

therefore the center density of the lattice σα(A) is given by

δ(σα(A)) =
1

2n|NL(α)DL|
1
2

tαn/2

NL(A)
=

1

16
,
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which is the optimal center density for this dimension, i.e., with the same

center density of the lattice 38.

Similarly, in the next table, we have that the lattice σα(A), where A is an

ideal of OL = Z[ζ20], has the same center density that the lattice E8 ' 38.

A NL(A) α NL(α) tα

±
(
1 − 2ζ20 − ζ 5

20 + 2ζ 7
20

)
OL, 16

2 − (ζ20 + ζ−1
20 )

25 40
±

(
1 − ζ 3

20 + ζ 4
20 − ζ 6

20 − ζ 7
20

)
OL +

(
ζ 2

20 + ζ−2
20

)

±
(
2 − ζ 2

20 + 2ζ 4
20 − 2ζ 6

20 + ζ 7
20

)
OL, 80 3 −

(
ζ 2

20 + ζ−2
20

)
1 40

±
(
1 − ζ 2

20 − ζ 3
20 − ζ 4

20 − ζ 6
20

)
OL

±
(
2 + ζ20 + 2ζ 4

20 − ζ 6
20

)
OL, 256

2 −
(
ζ20 + ζ−1

20

)

25 40
±

(
1 + ζ20 + ζ 2

20 + ζ 3
20 + ζ 4

20

)
OL +

(
ζ 2

20 + ζ−2
20

)

Example 3.9. IfL = Q(ζ21), where ζ21 is a primitive 21-th root of unity,A =

(ζ 2
21−ζ 4

21+ζ 8
21)OL is an ideal ofOL = Z[ζ21] and α = 1, then n = [L : Q] = 12,

DL = 36710, NL(A) = 7. If x ∈ A then x = (ζ 2
21 − ζ 4

21 + ζ 8
21)(a0 + a1ζ21 +

a2ζ
2
21 +a3ζ

3
21 +a4ζ

4
21 +a5ζ

5
21 +a6ζ

6
21 +a7ζ

7
21 +a8ζ

8
21 +a9ζ

9
21 +a10ζ

10
21 +a11ζ

11
21 ),

where a0, ∙ ∙ ∙ , a11 ∈ Z, and thus TrL(αx x̄) = 28a2
0+28a2

1+28a0a10−14a1a10+

28a2
10+28a0a11+28a1a11+28a2

11−14a0a2−14a11a2+28a2
2−14a0a3−14a1a3−

28a10a3+28a2
3 −14a0a4−14a1a4−28a11a4−14a2a4+28a2

4 +28a0a5−14a1a5+

28a10a5 − 14a2a5 − 14a3a5 + 28a2
5 + 28a1a6 − 14a10a6 + 28a11a6 − 14a2a6 −

14a3a6 − 14a4a6 + 28a2
6 − 28a0a7 − 14a10a7 − 14a11a7 + 28a2a7 − 14a3a7 −

14a4a7 − 14a5a7 + 28a2
7 − 28a1a8 − 14a10a8 − 14a11a8 + 28a3a8 − 14a4a8 −

14a5a8 − 14a6a8 + 28a2
8 − 14a0a9 − 14a11a9 − 28a2a9 + 28a4a9 − 14a5a9 −

14a6a9 − 14a7a9 + 28a2
9 . Hence tα = min{TrL(αx x̄) : x ∈ A, x 6= 0} = 28,

with a0 = a1 = a2 = a3 = a4 = a5 = a6 = a8 = a9 = a10 = a11 = 0 and

a7 = −1, and therefore the center density of the lattice σα(A) is given by

δ(σα(A)) =
1

2n|NL(α)DL|
1
2

tαn/2

NL(A)
=

1

27
,

which is the optimal center density for this dimension, i.e., with the same center

density of the lattice K12.
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Similarly, in the next table, we have that the lattice σα(A), where A is an

ideal ofOL = Z[ζ21] and α = 1, has the same center density that the lattice K12.

A N (A) tα

±
(
1 + ζ 6

21 − ζ 8
21

)
OL, ±

(
1 − ζ 4

21 + ζ 6
21

)
OL,

±
(
1 − ζ 2

21 + ζ 6
21

)
OL, ±

(
1 − ζ 2

21 − ζ 8
21

)
OL, 7 28

(−ζ 2
21 + ζ 4

21 − ζ 8
21)OL

4 Conclusions

In this work we presented examples of algebraic lattices via the twisted canonical

homomorphism with optimal center density in dimensions 2, 3, 4, 6, 8 and 12.

These algebraic lattices are rotated versions of known dense lattices. Note that

the examples given in this work are not new either. What is new however is the

way the densities of the lattices are checked through computations rather than

by theoretic arguments. Furthermore, with the use of canonical homomorphism

we believe that it is possible to construct algebraic lattices with optimal center

density in other dimensions.
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