8,039 research outputs found

    Closure theorems with applications to entire functions with gaps

    Get PDF
    In this paper we consider questions of completeness for spaces of continuous functions on a half line which satisfy appropriate growth conditions. The results obtained have consequences in the theory of entire functions with gap power series. In particular we show that, under an appropriate gap hypothesis, the rate of growth of an entire function in the whole plane is determined by its rate of growth along any given ray

    Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation

    Get PDF
    Background: Pulmonary vein isolation with radiofrequency catheter ablation techniques is used to prevent recurrences of human atrial fibrillation. Visualization of the architecture at the venoatrial junction could be crucial for these ablative techniques. Our study assesses the potential for intravascular ultrasound to provide this information. Methods and Results: We retrieved 32 pulmonary veins from 8 patients dying from noncardiac causes. We obtained cross-sectional intravascular ultrasound (IVUS) images with a 3.2F, 30-MHz ultrasound catheter at intervals on each vein. Histological cross-sections at the intervals allowed comparisons with ultrasonic images. The pulmonary venous wall at the venoatrial junction revealed a 3-layered ultrasonic pattern. The inner echogenic layer represents both endothelium and connective tissue of the media (mean maximal thickness, 1.4±0.3 mm). The middle hypoechogenic stratum corresponds to the sleeves of left atrial myocardium surrounding the external aspect of the venous media. This layer was thickest at the venoatrial junction (mean maximal thickness, 2.6±0.8 mm) and decreased toward the lung hilum. The outer echodense layer corresponds to fibro-fatty adventitial tissue (mean maximal thickness, 2.15±0.36 mm). We found a close agreement among the IVUS and histological measurements for maximal luminal diameter (mean difference, -0.12±1.3 mm) and maximal muscular thickness (mean difference, 0.17±0.13 mm) using the Bland and Altman method. Conclusions: Our experimental study demonstrates for the first time that IVUS images of the pulmonary veins can provide information on the distal limits and thickness of the myocardial sleeves and can be a valuable tool to help accurate targeting during ablative procedures

    Kondo lattice model: Unitary transformations, spin dynamics, strongly correlated charged modes, and vacuum instability

    Full text link
    Using unitary transformations, we express the Kondo lattice Hamiltonian in terms of fermionic operators that annihilate the ground state of the interacting system and that represent the best possible approximations to the actual charged excitations. In this way, we obtain an effective Hamiltonian which, for small couplings, consists in a kinetic term for conduction electrons and holes, an RKKY-like term, and a renormalized Kondo interaction. The physical picture of the system implied by this formalism is that of a vacuum state consisting in a background of RKKY-induced spin correlations, where two kinds of elementary modes can be excited: Soft neutral modes associated with deformations of the spin liquid, which lead to very large low-temperature values of the heat capacity and magnetic susceptibility, and charged modes corresponding to the excitation of electrons and holes in the system. Using the translational and spin rotational symmetries, we construct a simple ansatz to determine the charged excitations neglecting the effects of the spin correlations. Apart from the `normal', uncorrelated states, we find strongly correlated charged modes involving soft electrons (or holes) and spin fluctuations, which strongly renormalize the low-energy charged spectrum, and whose energy becomes negative beyond a critical coupling, signaling a vacuum instability and a transition to a new phase.Comment: 35 pages, revtex 3.

    Characterization of a reproducible model of fracture healing in mice using an open femoral osteotomy

    Get PDF
    Purpose: The classic fracture model, described by Bonnarens and Einhorn in 1984, enlists a blunt guillotine to generate a closed fracture in a pre-stabilized rodent femur. However, in less experienced hands, this technique yields considerable variability in fracture pattern and requires highly-specialized equipment. This study describes a reproducible and low-cost model of mouse fracture healing using an open femoral osteotomy. Methods: Femur fractures were produced in skeletally mature male and female mice using an open femoral osteotomy after intramedullary stabilization. Mice were recovered for up to 28 days prior to analysis with microradiographs, histomorphometry, a novel μCT methodology, and biomechanical torsion testing at weekly intervals. Results: Eight mice were excluded due to complications (8/193, 4.1%), including unacceptable fracture pattern (2/193, 1.0%). Microradiographs showed progression of the fracture site to mineralized callus by 14 days and remodelling 28 days after surgery. Histomorphometry from 14 to 28 days revealed decreased cartilage area and maintained bone area. μCT analysis demonstrated a reduction in mineral surface from 14 to 28 days, stable mineral volume, decreased strut number, and increased strut thickness. Torsion testing at 21 days showed that fractured femurs had 61% of the ultimate torque, 63% of the stiffness, and similar twist to failure when compared to unfractured contralateral femurs. Conclusions: The fracture model described herein, an open femoral osteotomy, demonstrated healing comparable to that reported using closed techniques. This simple model could be used in future research with improved reliability and reduced costs compared to the current options

    Breakdown of Landau Fermi liquid properties in the 2D2D Boson-Fermion model

    Full text link
    We study the normal state spectral properties of the fermionic excitations in the Boson-Fermion model. The fermionic single particle excitations show a flattening of the dispersion as the Fermi vector kF{\bf k}_{_F} is approached from below, forshadowing a Bogoliubov spectrum of a superconducting ground state. The width of the quasiparticle excitations near kF{\bf k}_{_F} increases monotonically as the temperature is lowered. In the fermionic distribution function this temperature dependence is manifest in a strong modification of n(k)n({\bf k}) in a small region below kF{\bf k}_{_F}, but a nearly TT independant n(kF)n({\bf k}_{_F}).Comment: 10 pages, RevTeX 3.

    CP violation in 5D Split Fermions Scenario

    Full text link
    We give a new configuration of split fermion positions in one extra dimension with two different Yukawa coupling strengths for up-type, huh_u, and down-type, hdh_d, quarks at huhd=36.0\frac{h_u}{h_d}=36.0. The new configurations can give enough CP violating (CPV) phase for accommodating all currently observed CPV processes. Therefore, a 5D standard model with split fermions is viable. In addition to the standard CKM phase, new CPV sources involving Kaluza-Klein(KK) gauge bosons coupling which arise from the fact that unitary rotation which transforms weak eigenstates into their mass eigenstates only holds for the zero modes which are the SM fields and not for the KK excitations. We have examined the physics of kaon, neutron, and B/DB/D mesons and found the most stringent bound on the size RR of the extra dimension comes from ϵK|\epsilon_K|. Moreover, it depends sensitively on the width, σ\sigma, of the Gaussian wavefunction in the extra dimension used to describe of the fermions. When σ/R1\sigma/R \ll 1, the constraint will be lifted due to GIM suppression on the flavor changing neutral current(FCNC) and CPV couplings.Comment: 24 pages, 8 figure

    A general perspective of the characterization and quantification of nanoparticles: Imaging, spectroscopic, and separation techniques

    Get PDF
    This article gives an overview of the different techniques used to identify, characterize, and quantify engineered nanoparticles (ENPs). The state-of-the-art of the field is summarized, and the different characterization techniques have been grouped according to the information they can provide. In addition, some selected applications are highlighted for each technique. The classification of the techniques has been carried out according to the main physical and chemical properties of the nanoparticles such as morphology, size, polydispersity characteristics, structural information, and elemental composition. Microscopy techniques including optical, electron and X-ray microscopy, and separation techniques with and without hyphenated detection systems are discussed. For each of these groups, a brief description of the techniques, specific features, and concepts, as well as several examples, are described.Junta de Andalucía FQM-5974CEI-Biotic Granada CEI2013- MP-1

    On the equivalence of the Einstein-Hilbert and the Einstein-Palatini formulations of general relativity for an arbitrary connection

    Full text link
    In the framework of the Einstein-Palatini formalism, even though the projective transformation connecting the arbitrary connection with the Levi Civita connection has been floating in the literature for a long time and perhaps the result was implicitly known in the affine gravity community, yet as far as we know Julia and Silva were the first to realise its gauge character. We rederive this result by using the Rosenfeld-Dirac-Bergmann approach to constrained Hamiltonian systems and do a comprehensive self contained analysis establishing the equivalence of the Einstein-Palatini and the metric formulations without having to impose the gauge choice that the connection is symmetric. We also make contact with the the Einstein-Cartan theory when the matter Lagrangian has fermions.Comment: 18 pages. Slight change in the title and wording of some sections to emphasize the main results. References added. Matches published versio

    The search for the meaning of life in soil:an opinion

    Get PDF
    The introduction of impressive technologies in the search for life's diversity and activity in soil has led to remarkable new techniques and knowledge concerning the soil microbial community. These have led to finding some important links to function. However, we attest that the general lack of causality found between the many metrics of microbial diversity and populations of soil microbes and function is due, at least in part, to the lack of understanding of the links between microbial populations and dynamics to their physical habitat and attendant moisture conditions. In this opinion paper we explore the importance of this interplay between organism and habitat. Further, as an example of this interplay, we introduce the potential importance of nematode movement and gene transfer in bacterial populations. Highlights: The importance of the physical habitat is highlighted in soil microbiology studies. The interplay between the soil–root–habitat is emphasized. Seeking a functional understanding of biodiversity rather than a ‘biology of numbers and differences’ approach is proposed. The movement of nematodes with respect to horizontal gene transfer is discussed.</p

    Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies

    Full text link
    We have investigated two-electron bound state formation in a square two-dimensional t-J-U model with hopping anisotropies for zero electron density; these anisotropies are introduced to mimic the hopping energies similar to those expected in stripe-like arrangements of holes and spins found in various transition metal oxides. In this report we provide analytical solutions to this problem, and thus demonstrate that bound-state formation occurs at a critical exchange coupling, J_c, that decreases to zero in the limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be contrasted with J_c/t = 2 for either a one-dimensional chain, or a two-dimensional plane with isotropic hopping. Most importantly, this behaviour is found to be qualitatively similar to that of two electrons on the two-leg ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter result as guidance, we have evaluated the pair correlation function, thus determining that the bound state corresponds to one electron moving along one chain, with the second electron moving along the opposite chain, similar to two electrons confined to move along parallel, neighbouring, metallic stripes. We emphasize that the above results are not restricted to the zero density limit - we have completed an exact diagonalization study of two holes in a 12 X 2 two-leg ladder described by the t-J model and have found that the above-mentioned lowering of the binding energy with hopping anisotropy persists near half filling.Comment: 6 pages, 3 eps figure
    corecore