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CLOSURE THEOREMS WITH APPLICATIONS 
TO ENTIRE FUNCTIONS WITH GAPS 

BY 

J. M. ANDERSON AND K. G. BINMORE 

Abstract. In this paper we consider questions of completeness for spaces of 
continuous functions on a half line which satisfy appropriate growth conditions. The 
results obtained have consequences in the theory of entire functions with gap power 
series. In particular we show that, under an appropriate gap hypothesis, the rate of 
growth of an entire function in the whole plane is determined by its rate of growth 
along any given ray. 

1. Introduction. We consider nonconstant entire functions f(z) which have gap 
power series expansions-i.e. expansions of the form 

00 

(1.1) f(z) = 2 anzT 
n=0 

in which an=0 (n 0 A), where A is a given set of positive integers. The maximum 
modulus of f(z) on the circle Iz =r will be denoted by M(r) = M(r,f). As is well 
known, the function 

(1.2) m(s) = m(s,f) = log M(es) 

is a convex function of s. 
The growth of M(r,f) will be measured by comparing it with that of a given 

function H(r). We shall always suppose that H(r) is a positive increasing function 
defined for 0 < r < oo and that 

(1.3) h(s) = log H(es) 

is a convex function of s. We shall assume, in fact, that h(s) has a positive second 

derivative at every point. This simplifies some of the proofs and is not an important 

restriction. We shall also insist that, for each integer n, 

(1.4) r-nH(r)-- +oo (r-- +oo). 

This amounts to excluding the case of polynomial growth (see Theorem A of ?2). 

The set A is to be thought of as being lacunary in an appropriate sense. Our 

theorems show that, under such an hypothesis, the behaviour of M(r,f) is deter- 
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mined by the behaviour of f(z) along any given ray emanating from the origin. 
We shall always suppose such a ray to be the positive real axis, but this, of course, 
involves no loss of generality. Our theory applies to functions with an arbitrary 
rate of growth, but, as some of our theorems are known in the case of functions 
of finite order-i.e. functions for which 

p= lim sup log log M(r) < 00 p r-+ oo log r 

it may be advantageous to think of the functions H(r) as growing very rapidly 
indeed. 

Using the methods of [1], the following theorem is easily proved. 

THEOREM 1. Suppose that(') 

(1.5) LA-' < 0o. 

Then the hypothesis 

(1.6) If(x)I < H(x) (O < x < oo) 

implies that, for each a> 1, there is a constant A such that 

(1.7) M(r,f) < AH(orr) (O < r < so). 

This extends a theorem of Gaier [6]. In Gaier's theorem, condition (1.6) is 
replaced by the hypothesis thatf has finite order p and mean type Talong a ray, 
and (1.7) is replaced by the conclusion thatf has order p and type Tin the whole 
plane. 

Our initial aim in writing this paper is to examine the extent to which the gap 
condition (1.5) can be relaxed if one takes into account the rate of growth of f(z). 
This question is discussed in ?2. The arguments used depend very strongly on the 
work of Malliavin [11] concerning the completeness of systems of monomials 
{XAn} in a weighted Banach space. 

Let SH denote the Banach space consisting of all continuous functions f(x) on 
[0, oo) for which f(O) = 0 and which satisfy lim,. + If(x)IH(x) = 0. As norm in 
the space we use 

lIf IIH= max f(x#/H(x)l. 

Let V denote the linear manifold consisting of all finite linear combinations of 
the monomials {XAn}. In view of (1.4), V is a subset of SH. Malliavin gives a necessary 
and sufficient condition that V be dense in SH-i.e. that anyf E SH may be approxi- 
mated in the 11 IIH norm by linear combinations of the {XAn}. A question which 
Malliavin does not consider, but which is of importance for our application of his 
work, is the following: 

(1) Where the symbol 2 appears with no indication of the range of summation it will be 
assumed that the summation is from 1 to oo. 
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Question. Suppose that V is not dense in SH. Then what is the closure V of V in SH? 

An analogous problem concerns the Banach space C0[0, 1] consisting of all 
continuous functionsf(x) on [0, 1] which satisfyf(O)=0, the norm being given by 

lf J =max0o<?1 If(x)I. This problem was solved by Clarkson and Erd6s [3] (see 
also Korevaar [8]). It is well known that V is dense in C0[O, 1] if and only if 

(1.8) Z A-' = 00. 

If this is not the case (i.e. if : A' < oo) then the closure of V in C0[0, 1 ] turns out to 
be a surprisingly small set-namely the set of all fe C0[0, 1] which are the 
restrictions to [0, 1] of functionsf(z) which are analytic in the open unit disc with 
a power series expansion of the form 

(1.9) f(z) = A Az?n. 

By using this result we may say something about the closure of V in SH in the 
case when : A 1 < oo. If f(x) belongs to the closure of V in SH, then, for each 
R >0, the function f(Rx) belongs to the closure of V in the space C0[0, 1]. In view 
of the result of Clarkson and Erdos mentioned above, we deduce thatf is the restric- 
tion to the positive real axis of an entire functionf(z) with a power series expansion 
of the form (1.9). Moreover, sincefe SH, we have that 

f(x) = O(H(x)) (x -> +oo). 

On employing Theorem 1, we deduce that, for each ao> 1, 

(1.10) M(r,f) = O(H(ar)) (r-- +oo). 

For 0< o < oo, let E., denote the set of all entire functions f(z) satisfying (1.9) 
and (1.10). From the above remarks we have that Vc E, (a> 1). 

On the other hand, iff E , (a < 1), then it is easily seen (as in Theorem 4 below) 
that the partial sums of its power series expansion converge to f(z) in the 11 * II H 

norm and hence thatfe V. 
If E A 1 < oo, we can therefore assert that 

(1.11) EaC VCE. 

provided that 0 < a < 1 < P. The more difficult case when : A;1 = oo is discussed in 
?4. In neither case, however, are we able to give a precise characterisation of the 
set V. 

To conclude this section we remark that the case H(x) = ex of Malliavin's results 
had been obtained earlier by Fuchs [5]. The question of noncompleteness in this 
case has been discussed by Leont'ev [10] and our results of ?4 complement his to 
the extent that he deals only with the case of finite order. 

2. Growth theorems. We begin with some definitions. As always h(s) is given 
by (1.3). If A is a set of positive integers, we introduce the function 

(2.1) Lh(x) = n An' 
An < h(x) 
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and define the quantities Dh and Dh by 

Dh = Dh(A) = lim sup x - 1Lh(x), Ph = Dh(A) = lim inf x - 1Lh(x). 
x b+ +r x0 X- + 0 

We shall refer to Dh and Dh as the upper and lower h-densities of the set A. Note, 
however, that these numbers may exceed one. 

The set A will be said to be h-measurable if Dh = Dh, in which case the common 
value will be denoted by D,. We may call Dh the h-density of the set A. Following 
Kahane [7], we may associate with Dh a "densite exterieure" D*. This number is 
defined by 

(2.2) Dh = D*(A) = inf Dh(G) 

where the infimum is extended over all h-measurable sets ju which contain the set 
A. To be consistent with what seems to be the English speaking usage, we shall 
refer to D* as the maximum h-density of the set A. The following inequality clearly 
holds for all h and A: 

Ph < Dh ? D*h 

The case when h is the exponential function has been considered, for example, 
by Edrei [4] and by Malliavin [11]. They refer to the densities involved as 
"logarithmic". We remark that the "maximum logarithmic density" D*x(A) 
of a set A admits the following alternative definition-namely 

D*,(A) = lim lim sup L(x) -L(x} 

where L(x)= A< x An 1. 
Suppose now that f(z) is an entire function and that m(s) = m(s,f) is given by 

(1.2). We shall say thatf(z) has h-order p (in the whole plane) if 

p = lim sup h'(m(s)) 
s-a)3 S 

The h-order reduces to the usual notion of order in the case when h is the exponen- 
tial function. We shall also speak of a function having h-order p "along a ray" or 
"in an angle", the definitions being the obvious ones. 

Two increasing convex functions, h(s) and k(s), will be said to be comparable if 
the limit 

(2.3) = lim 
- 

I(k(s)) 

exists. Here 0 < 1< oo. If 0 < 1< oo, then an entire function f(z) has h-order p if and 
only if it has k-order pl-'. 

In a number of our theorems, we require that the function h(s), in addition to 
satisfying the requirements of ?1, have the property that log h(s) is a convex 
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function of s. This implies that (log h(s))/s -? m (s -- + oo) for some m (O < m < oo). 
The interesting case, of course, is that when m = oo, since, if m < oo, it follows from 
the above remarks thatf(z) has h-order p if and only if it has (ordinary) order mp. 

With these definitions we now state 

THEOREM 2. Suppose that log h(s) is a convex function of s and that k(s) is a 
convex function of s which is comparable with h(s). Let f(z), given by (1.1), be an 
entire function with h-order at most p < oo and suppose that 

(2.4) D*(A) < 1/2p. 

Then the hypothesis that f(z) has k-order a < p along a ray implies that f(z) has k-order 
a in the whole plane. 

This implies that an entire function f(z) satisfying the conditions of Theorem 2 
has the same h-order along every ray as it does in the whole plane. On taking h(s) 
= k(s) = exp s, we obtain the following corollary (see Kovari [9, Theorem 1] for a 
somewhat similar result). 

COROLLARY 1. Let f(z) have order at most p < oo and suppose that 

(2. 5) D*xp(A) < 1 /2p. 

Then the hypothesis that f(z) has order a < p along a ray implies that f(z) has order a 

in the whole plane. 

The question arises as to whether or not Theorem 2 is "best possible". Since 
k(s) is convex, we have that k(s)/s -? y (s -? + oo) where 0 ? y < oo. If y < oo, the 
hypothesis that f has k-order a < oo along a ray implies that f has polynomial 
growth along the ray. This is a situation we have considered elsewhere [2]. In the 
notation of this section we have 

THEOREM A. Let f(z) have h-order p < oo and suppose that 

(2.6) DP(A) < 1/2p. 

Then the hypothesis that f is majorised by some polynomial along a ray implies that f 
is itself a polynomial. 

Conversely, if log h(s) is convex, then, given any set of positive integers A for 
which Dh(A)> 1/2p, there exists a transcendental entire function f(z) with a gap 
power series expansion of the form (1.1) and of h-order at most p but such that 

f(x) >0 (x ->+ o). 
Thus, Theorem 2 and Corollary 1 are best possible in the sense that the number 

(2p)-1 which appears in (2.4) and (2.5) cannot be replaced by any larger constant. 
One simply applies Theorem A to a set A for which Dh(A)= D*(A). However, it 
seems possible that Theorem 2 remains true if condition (2.4) is replaced by (2.6). 
We have not been able to settle this question, even in the case when h(s) is the 
exponential function. 
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In addition to considering growth along a ray, one can also consider how the 
growth in an angle of an entire function with a gap power series expansion affects 
its growth in the whole plane. We discuss this question in ?7. 

3. Approximation results. We now turn to the Banach space SH, and the various 
other concepts introduced in ?1. We recall that H(s) is a positive increasing function 
defined for O<s< oo. In particular, H(O) >0. Also h(s) = log H(es) is a convex 
function of s. For the given set A = {A} of positive integers we define 

(3.1) A(r) = 2 2 A;'-1 
An<r 

As before, V denotes the set of all finite linear combinations of the monomials 
{xAn}. 

Malliavin [11] proves the following theorem: 

THEOREM B. A necessary and sufficient condition that V be dense in SH is that, for 
each real constant a, 

(3.2) h(A(r)-a)? = + dr 

The dual space SH of SH is the set of all measures ju on [0, oo) for which 

IIjIIIH = H(t)jdjt(t)I < O. 

It is well known that a necessary and sufficient condition for V to be dense in SH 

(i.e. that the sequence {xAn} be closed in SH) is that the only measure ju E SH which 
satisfies 

(3.3) {tAndpu(t) = O (n = 1, 2,...) 

is ,u=O (i.e. that the sequence {xAn} is complete in SH). To prove the necessity of 
(3.2) in Theorem B, Malliavin therefore assumes that (3.2) does not hold and 
constructs a measure H E SH which satisfies (3.3) but does not vanish identically. 

Malliavin's construction is very explicit. If (3.2) does not hold, the measure jU 
is determined by 

(3.4) G(z) = tz- 1 d,a(t) = g(z) 1j (1 -z/(A+ 1)) e2z1(A+l) 

where g(z) satisfies 

(3.5) log Jg(Zz) =-X f x2+(y-t)2 dt-bx. 

In this equation b is a constant and i(t) is a certain even function of t which 
satisfies f + X +(t) dt/t2 < 00. 



1971] CLOSURE THEOREMS WITH APPLICATIONS 387 

A sequence {xAn} is said to be free in SH if no xAk can be approximated in the 
11 K norm by linear combinations of the other elements of {xAn}. Let Ln be the 
linear functional defined on V which maps each polynomial P(x)= akXAk onto 
its nth coefficient. That is to say 

(3.6) an = L(P). 

It is easy to prove that {XAn} is free in SH if and only if each of the linear functionals 
Ln (n= 1, 2,.. .) is bounded. As a consequence we deduce that a necessary and 
sufficient condition for the sequence {XAn} to be free in SH is the existence of measures 

en E SH (n = 1, 2,...) with the property that 

tAk dil-n(t) = 1, n =k, 

=0, n k. 

The sufficiency is immediate. For the necessity, we note that Ln may be extended to 
the whole of SH by the Hahn-Banach theorem and therefore may be represented 
in the appropriate form. 

We now prove a lemma which implies that the sequence {XAn} is free in SH 

whenever V is not dense in SH. The proof of the lemma requires some remarks 
concerning the properties of convex functions. 

Suppose that g(x) is a convex function of x with the property that 

(3.7) g(x)/x ->+ oo (x ->+ oo). 

With such a function we may associate another function rg(y) defined by 

(3.8) Tg(Y) = sup {xy-g(x)}. 
x 

The function rg(y) is itself convex and satisfies (3.7). Moreover (see [12, p. 7]), we 
have that 

(3.9) g(x) = sup {yx- -r(y)}. 
y 

LEMMA 1. Suppose that V is not dense in SH. Then there exist measures fin E SH 
(n = 1, 2, 3, . .)for which 

f tAk dpln(t)= 1, n =k, 

=0, n k, 

and such that 

||I'n ||H < C'n exp {-2An I A-1 

where C is a constant depending only on the sequence A and the function H(x). 
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Proof. We set HO(t)=H(t+ 1) (t 0) and define, for x_ 0, 

M(x) = max (H(t)) 

We now write H1(t) = O4HO(t). Since V is not dense in SH it follows from Theorem B 
that V is not dense in SH1. Hence we may use Malliavin's construction to obtain a 
nonzero measure H e SH1 with the property that 

J tAk d,(t) = 0 (k = 1,2, 2* .). 

This measure Ht is determined by (3.4). Since H c SH,e we have that, for x > 4, 

tx)ro 
tx 

do I (t) o () H1(t )I d-(t)I 

< sup |th) | <* H < KM(x-4), 

where K is a constant which depends only on the function H(s) and on /. Since the 
function g(z) determined by (3.4) has no zeros, the function G"(z) = (z - A - 1) - 'G(z) 
has no zero at z = A, + 1. On writing A = A,, we conclude that 

Gn(Z) = G(z) 
Z-A-1 

=o z-A-1 du(t) = f tA dp(t) 

= [ZAiI J UA dp(u)]-j t- A2 {J' UA du(u)} dt. 

We now seek to show that the integrated part of this expression vanishes, 
provided that x = z > 1. Firstly, 

|tZ-A-1 JUAI du(u) |< tx-1 Idu(u)| o (t 0+)0 

Also, since G(A + 1) = 0, 
rt 

UA du(u) = u- U dp(u); 

and hence 

tz-A-1 UA du(u) tz= u A-1 J du(u) 

< max H I1IUIIH1 O (t + oo). 

Thus, for Rz> 1, 

(3.10) Gn(z) = tz- 1 dvn(t) 
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where vn is defined by 

dv,(t) = -tWxi {J U, dir(u)} dt. 

We shall show that, for each integer n, 

(3.11) IIvn1IuH - A, 

where A is a constant depending only on H and a. Assuming this fact for the 
moment, we define u, by 

diun(t) = A )dvn(t). 

We have from (3.9) that 

t /~()-4 Gnl(Ak+ 1) tAk dj = 
Gn(An +1) 1, n =k, 

=0, n k. 

Moreover, it is not difficult to deduce from (3.4) that 

Gn(An + 1) 1 < BAn exp {-2 2A: Ak- 
k = 1 

where B is a constant which depends only on the sequence A and on the function 
H(s). The necessary estimation for the infinite product which appears in (3.4) is 
given in Fuchs [5]. It follows immediately from this inequality and from (3.11) that 

n 
IIbwnhIH < AB?n exp -2An : Ak-l 

k=1 

It remains to establish (3.11). Now, if x_ A-1, 

~~~~~~~~~~~~~~~~~t 
f txIdvn(t)I _ f tx-- 1 dt { I du(u) 

- A U|du(u)j f tx-A-i dt - A-x JX uxId(u) 

< KM(x-4) (x > 4). 

Only the last inequality above requires x ' 4, and so we conclude, in particular, that 

I Idvn(t) I < I Idl-(t) I, 

for each integer n, the integrals existing since H(0) > 0. 
If x ? A+1, 
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txldvn(t)l = tx-A-1 dt ux d,u(u) 

< tx-Ai1 dt f uId,u(u)I 

- J' Ujdu(u)IJ tx-A-1 dt = x JA uxldu(u)I 

_ KM(x-4) (x ? 4). 

When A-I <x< A+ 1, we have that 

Jt txdvn(t)5 ? J tX-2Idvn(t)I+{ tx+2Idvn(t) 

< KM(x-6)+KM(x-2) (x > 6) 

< 2KM(x-2) (x > 6). 

On combining these results, we obtain that, if x ' 6, 

(3.12) tx dvn(t)l < 2KM(x-2). 

We now define constants Ap by 

r+1 

Ap = J Idvn(t) (p = 1, 2, 3,.. .). 

From (3.12), we deduce that, for any given p (0 <p < oo) and any x ? 6, 

oP+1 o 

Appx = px dvn(t) ? < tX IdVn(t)I 2KM(x-2). 

Hence, 

AK < <M(x-2) = max -2 | 2K =t>_o H0(t) 

Therefore, 

(3.13) logA2P < max{sx-(ho(s)+2s)} = k(x), 2K =s 

say. But ho(s) + 2s is a convex function of s, and thus, by (3.9), 

ho(s)+2s = max{sx-k(x)}. 
S 

We may write this in the form 

log t2HO(t) = max {x log t-k(x)}. 
x 

Thus 

(3.14) t2HO(t) < max {tx exp (-k(x))} < max (p)X} 
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by (3.13) provided that the maximum value of x log t - k(x) is assumed for a value 
of x> 6. This will be the case as long as t is large enough-say t Ypo, where po is a 
constant which depends only on the function H(s). 

We choose t=p>po in (3.14) and obtain that, for p_po, p2Ho(p) ? 2K/Av. 
Hence 

ApH(p +1) ? 2K/p2 (p > po). 

We therefore conclude that 

IIVnllH = H(t)Idvn(t)I 

< H(po)j I dvn(t)I + 2 ApH(p + 1) 
V=V0 

? H(po)jI Id,4(t)I+2K 2 p:a = A, 

where A is a constant which depends only on the function H(s) and on U. This 
completes the proof of Lemma 1. 

Suppose now that V is not dense in SH. Then it follows from Lemma 1 that the 
sequence {x?n} is free in SH. Hence the linear functional Ln defined on V by (3.6) 
is bounded. Its extension Ln as a bounded linear functional to V is therefore unique. 
Given any f e V, we may therefore define an = Ln(f) and write 

(3.15) f(x) ~ anxAn. 

This definition says nothing about the convergence of the series in (3.15). However, 
if 

Pn(x) = a xk 

is a polynomial with the property that IlPn -fII1H -> 0 (n -> ce), then ank -ak 

(n -> co) for each k= 1, 2, ... 

LEMMA 2. Suppose that V is not dense in SH. Then, given any fe V for which 

f(x) - anXAn, we have that 

IanI < C n exp {-2An k A1} If IfIH 

where C is a constant depending only on the set A and on H(s). 

Proof. In view of the continuity of Ln (n= 1, 2,...), we need prove this only in 
the case when f is a polynomial P E V. We have 

an = P(t) dPn(t), 

where the measure 1gn is that of Lemma 1. Hence 
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Ian| < max P(t) *j H(t)ldun(t)l t?o0 H(t) 

= IIPIIH.1IknllH 

< CAn exp {- 2An k Ak }.IIPIIH 

by Lemma 1, as required. 

4. Problems of closure. Suppose now that V is not dense in SH. Then how big 
is the closure V of V in SH ? We have already considered the case when - AI < 0o 
in the introduction. For this section we shall therefore make the assumption that 

(4.1) An = 00. 

We recall the definitions of M(r) = M(r, f), m(s) and A(r) given in ??1 and 3, and 
define 

(4.2) 0(s) = max {ns-nA(n)}. 
n->O 

We now state 

THEOREM 3. Suppose that (4.1) holds, and that V is not dense in SH. Then each 
f E V is the restriction to the real axis of an entire function f(z) with a gap power 
series expansion of the form 

(4.3) f(z) = E Anz.n 

Moreover, there is a constant a, which depends only on the set A and on H(s), such 
that m(s, f) _ 0(s + a) for all sufficiently large values of s. 

Proof. We write Cn = C?n exp {-2An ; 1 Ak 1}, and suppose thatf(x nX A n 

We then have from Lemma 2 that 

(4.4)~~~~~~~~~ lAnl |<_ Cn11|f11|| 

Since CnlAn -O 0, we deduce that the series 

g(z) = 2 AnzAn 

converges for all values of z. The function g(z) is therefore entire. We prove that 

f(x) =g(x) (O x < oo). 
Let 

k 

Pk(X) = E Ankkxn 
n=O 

be such that 
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Then 

IAn-Ankl _ Cnllf-PkIIH 

by Lemma 2. Thus, for a given x (0 _ x < oo), 

If(X)-g(X)j - If(X)-Pk(x)I + jPk(x)-g(X)j 

< H(x)lIf-PkIIH+ | (Ank-An)xAn + | AnxAn 
n=O n=k+l 

? H(x)llf-PkIIH+{Z CnX I}IIf-Pk nH+ X 
n=O n=k+l 

0 (k >oo). 

Hence f(x) =g(x) (0 < x < oo). Moreover, 

M(R,f) _ AnIRAn _ IlfIII Z CAnRAn exp {-2An k=1 

by Lemma 2. Hence, for a suitable constant K, 

M(R,f) < Kmax {(2CR)n exp (-nA(n))}.Z 2-k. 
n 

On taking logarithms, we obtain that, for all large s, 

m(s, f) < max {sn + an-nA(n)} = /(s + a), 
n 

where R = es and a > log 2C. This completes the proof of Theorem 3. 

THEOREM 4. Let f(z) be an entire function satisfying (4.3) andfor which 

(4.5) m(s,f) < h(s-a) 

for some a >0 and all large values of s. Then the partial sums of the power series 
expansion off(z) converge to f(z) in the 11 IH norm and hence f E V. 

Proof. Let f(z) = n anzn where an = 0 (n 0 A). It suffices to show that 

i anxn 0 (N-> oo). 
nN H 

We deduce this from the fact that 

A 
= t>O {H(t)} 

To obtain this last inequality, we begin with an estimate of the coefficients. From 
Cauchy's coefficient inequality, 

log Iaan < -sup {ns-m(s)} =-sup {nt-m(t + a)}-na. 
S t 
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Writing ma(t) = m(t + a), we have that 

IanI < exp{-na--rtma(n)} 

where, for a convex function g, -rg is defined by (3.8). Also, 

sup { } = exp {sup [sn - h(s)]} = exp Trh(n). 

Hence 

00 

A < E exp {-na--rima(n) + rh(n)}. 
n=O 

A sufficient condition that A be finite is therefore that rh(n) < -rma(n) for large 
values of n. But this follows from (4.5) and so the proof of Theorem 4 is complete. 

5. Density conditions. If the function 0(s) is given by (4.2), we define the 
function 'L"(r) by 

(5.1) ,(s) = log lf(es). 

For fi> 0 we define Fi to be the set of all entire functions with a gap power series 
expansion of the form (4.3) for which 

M(r,f) = OQIF(f3r)) (r -a co). 

Assembling the results of the previous section and recalling the definition of 
Ea given in ?1, we conclude that, if :; A -I= oo and V is not dense in SH, then 

(5.2) EaC PCF,i 

for each ac < 1 and some f > 1. This result is less satisfactory than (1.11) which was 
obtained for the case :; A- 1 < c. 

A more elegant conclusion than (5.2) is possible if one is willing to admit some 
side conditions. For p > 0 we let G, denote the set of all entire functions with a gap 
power series expansion of the form (4.3) and which have h-order at most equal to p. 
With this definition we have 

THEOREM 5. Suppose that log h(s) is convex and that 

(5.3) D^*(A) < 

Then, provided that 0 < a < 1, Gac Vc G1. 

We require two lemmas. 

LEMMA 3. Suppose that log h(s) is a convex function of s. Then V is dense in SH 

if Dh(A) > and V is not dense in SH if Dh(A) <T. 

Proof. The proof simply uses the criteria of Theorem B. We suppose firstly that 
Dh(A) > 1 and that a is a given positive number. 
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Then there exists a sequence of real numbers {Sk} which is unbounded above 
and has the property that 

A(sk)-a ! h-l(sk) (k = 1, 2,....) 

where A(s) is defined by (3.1). We may assume that Sk> 2Sk 1 and so 

00 
h(A(s) -a) dsI > 002 i h(A(s) -a) dfs > 

00 I = +?? 2 = 2,~ ~~~~ +o 

It follows from Theorem B that V is dense in SH. 

Now suppose that Dh < 1. Then there exists a 8 < 1 such that, for large values of s, 
A(s) < Ah - 1(s). Since log h(s) is convex, we have that 

h(8s) = O(h(s))6 (s + a). 

For an appropriate constant A, 

h(A( s) - 00ds + 0 ds 
J h(A(s)) 2<J h(Sh (s)) 2 < A J S2- < X 

It follows from Theorem B that V is not dense in SH. 

LEMMA 4. Suppose that g(x) is a strictly increasing function of x which has a 
positive second derivative at every point and which satisfies (3.7). Then, if log g(x) 
is convex, there is a constant 8 > 0 such that 

(5.4) xg- 1(X)-x _ -rg(x) _ xg- 1(8X) 

for all sufficiently large values of x. 

Proof. The left-hand inequality is obtained by substituting x=g -1(y) into (3.8). 
To prove the other inequality, we let k(x) =g'(x). Then 

(5.5) Tg(x) = xk'-(x)-g(k'-(x)) _ xk'-(x). 

Since log g(x) is convex, its derivative is increasing. It follows that there is a 8 > 0 
such that 

d 
log(x))>1 

lxo g(x) g(x) = 

for all sufficiently large values of x. We let y =g(x) and conclude that 

y/S ? g'(x) = k(g-1(y)). 

Hence g- '(y)>k-1(y) and the result follows from (5.5). 
Proof of Theorem 5. The conclusion that GaC V for each ac (O <c< 1) follows 

immediately from the fact that EaC V for each ac (O <c< 1). It remains to show 
that J7cG1. In view of (1.11) we may assume that 2 A- 1=oo. 

Let A satisfy 0 < A < 1. By (5.3) we may embed A in a set of positive integers u 
for which Dh(O) exists and satisfies 
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(5.6) 2A < Dhu) < 

We denote by W the set of all finite linear combinations of the monomials 
{xun} and write 

4(x) = 2 n 
,on <X 

Evidently V7c W. It follows from (5.6) that Dh() < and therefore, by Lemma 3, 
we may deduce that W is not dense in SH. 

Now suppose that f E V. Thenf fE W and hence, by Theorem 4, f is an entire 
function with a gap power series expansion of the form f(z)-= O a Zn in which 
an=0 (n 0 ,u). Further, there exists a constant a such that, for large values of s, 
m(s, f) < 0(s + a) where 

(5.7) 0(s) = max {ns-nii(n)}. 

By (5.6) we have that ,u(n) > Ah - l(n), for all sufficiently large values of n. But 
log h(s) is convex and hence, by Lemma 4, there is a constant 8 such that 
h - l(n) > (8In)-rh(n/I). Thus, for all sufficiently large values of n, 

u(n) > l8rhn 

On substituting this inequality into (5.7) and writing n = m , we obtain that, for all 
large values of s, 

0(s) ? max {ms - AS rh(m)} 

= AS max { --rh(m) ASh(A) 

by (3.9). Thus given any A' satisfying 0 < A' < A we conclude that, for large values 
of s, m(s,f) h(s/lA'). Hence 

h - 1(m(s)) 1 Is lim sup = Al 

But A, and hence A' can be chosen as close to 1 as we like. It follows then that 
f(z) has h-order at most 1; i.e. that Vc G1, as required. 

6. Growth on a ray. 
Proof of Theorem 1. We may suppose that f(O) = 0. It is then a simple conse- 

quence of Theorem 1 of [1] that, for any fixed K> 1, there is an N such that 

lanrnj ?_ Kn max jf(x)j 

for each n ? N and every r > 0. (For the necessary estimation of the product 11(n) 
see, for example, [6].) Given ao> 1, we suppose that ao> K> 1. Then, for appropriate 
constants B and C, 
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oo 

M(r,f) < BrN + janrnojrnorn 
n=N 

< BrN +H(rr) E 

- BrN + CH(ra) 

from which the theorem follows by (1.4). 
Proof of Theorem 2. We may assume in the first place that k(s)/s + 00 

(s -> + oo) since Theorem A covers the case when this does not hold. 
We may also assume that p < 1 and that D*(A)< 2. (If necessary, we replace 

h(s) by h(Ts) where r is chosen so that r > p and rD*(A) < 2.) Each of the functions 
f(Rt), where R>0, then has h-order p < 1 and so we deduce from Theorem 6 that 
f(Rt) e Vfor each R>0. 

Since the functions h(s) and k(s) are comparable, the equation (2.3) holds for 
some 1 (0?1 < oo). Since a < p, we have that 1< oo. We distinguish two cases: when 
/= 0 and when 0 << oo. In view of the remark following (2.3), no loss of generality 
is involved in the second case if we take h(s) = k(s). 

Now D*(A) < -. Hence, if 0 < A < 1, we may follow the argument of Theorem 6 
and embed A in a set of positive integers It for which Dh(j) exists and such that 
-A < Dh(I) <1 . With the notation of Theorem 6 we have that W is not dense in 

SH and f(Rt) E Vc W for each R > 0. 
Now suppose thatf has the power series expansion (1.1). It follows from Lemma 

2 that, for each R > 0, 

(6.1) lanR'j I C n exp {-n(n)} If(Rt)lIH 

where tu is given by (5.5). 

We now use the hypothesis thatf has k-order a on a ray. We can assume without 

loss of generality that the ray is the positive real axis. If a < r < 1, we obtain that, 

for large values of s, log If(es) I < k(7s). Hence, writing R = er, we have that 

log IIf(Rt) II H ? sup {k(Trr + rs)-h(s)}. 

Since k(s) is convex, 

k(-rr+ rs) ? ak(-rr/a) +?k(-rs//), 

provided that a and 8 are positive and that a+ ?,= 1. Thus 

(6.2) log jjf(Rt) 1I H _ ock(rr/a) + sup {/k(Qrs//) - h(s)}. 

Suppose in the first instance that 1=0. Then for any P > 0, 

(6.3) Pk(rs/fP) < h(s) 

for large values of s. Hence, for a suitable constant a, 

log IIf(Rt)II H < ak('-r/a) + a. 
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Since ,u(n) -> oo (n -? oo), it follows from (6.1) that 

anRj I _ 2 - n * B exp {ak(rr/oa)} 

for a suitable constant B. Thus 

M(R,f) < 2 lanjRn < B exp (ak(rr/1a)). 

Hence, if b > 0, the inequality 

m(r,f) ' ak(rr/a) + log B < k('rr/a + b) 

holds for all large values of r. But equation (6.3) holds for each 3 > 0. Since a +/ =1, 
a may be chosen arbitrarily close to 1. As r is any number which satisfies a < X < 1, 
it follows thatf has k-order a in the whole plane. Thus the theorem is proved in the 
case 1= 0. 

Suppose now that 0<1< oo. For this case we may assume that h(s) = k(s). We 
now take = , in which case a= 1- -r. From (6.2) it then follows that 

(6.4) log Ijf(Rt)IIH ? ak(rr/a). 

Since log h(s) is convex, we may estimate tu(s) as in Theorem 6. We obtain that 
for large values of s, 

sb(S) > Arh(S) = Ark(S). 

On substituting this result and the inequality (6.4) into (6.1), we deduce that, for a 
suitable constant y, 

log IanRn < yn - Ai(n) + ak(i-r/a). 

Thus, 

log an I < yn- Ark(n) - sup {nr - ak(ir/a)} 
r 

= yn-A Tk(n)- a sup {ns/IT-k(s)} 
s 

= yn- ATk(n) - aTk(nIT) 

? 
yn-(A+a/T)Tk(n) 

since Tk iS convex. It follows that 

log lanRn | -n + sup {(r + y + I)n-((A + a/IT)k(n)} 
n 

= -n+(A+a/T)k(/ jiiV 

Hence, proceeding as in the case 1=0, we conclude that, for an appropriate 
constant b, m(r, f) $ k(8r + b), where 8 = (A + a/T) -1, for all sufficiently large values 
of r. In this inequality a = 1- Tand A may be chosen as close to 1 as we please. 
It follows that 

lim sup k 1(m(r)) < 8 
r --j- ao r 
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where 8 may be taken as close to -, and hence as close to a as we choose. Thus 
f(z) has k-order at most a, and the proof of Theorem 2 is complete. 

7. Growth in an angle. Edrei [4] and Malliavin [11, p. 233] have both inde- 
pendently obtained the following result. 

THEOREM C. Let f(z) have order p <oo in some angle of opening greater than 
27TD* (A). Then f(z) has order p in the whole plane. 

Malliavin deduces this from his Theorem 10.4 which is a consequence of his 
approximation results. His method also yields the following theorem. In this 
theorem the number Dt(A) is defined by 

(7.1) Dt(A) = lim L(x)-L(y) 
X/Ys+u0 log x-logy 

THEOREM 6. Let f(z) have h-order p <oo in some angle of opening greater than 
27rDt(A). Then f(z) has h-order p in the whole plane. 

Malliavin calls the number Dt(A) the quasi-logarithmic density of A. As he 
remarks 

(7.2) Dexp(A) _ D*r,(A) < Dt(A) 

and, therefore, Theorem 6 is weaker than Theorem C in the case when h is the 
exponential function. It would be interesting to know whether Theorem 6 remains 
true in general with Dt(A) replaced by D* p(A). 

Theorem 6 is a consequence of Theorem D below. This is simply a version of 
Malliavin's Theorem 10.4. Before quoting Theorem D, we require a few 
definitions. 

If k(r) is a real valued function on (0, oo), the function ko(r) is defined by 

ko(r) = inf k(s). 
s_r 

The function k(r) is said to be asymptotically increasing if the function k(r) - ko(r) 
is bounded (0 < r < oo). 

The quasi-logarithmic density Dt(A), defined by (7.1) above, turns out to be 
the greatest lower bound(2) of the set of all a for which a log x -L(x) is asymp- 
totically increasing. 

The function g(z) will be assumed to be analytic at the origin with a gap power 
series expansion of the form 

00 

(7.3) g(z) = czn 
n=O 

in which cn = 0 (n 0 A). 

(2) Not the least upper bound as in [11, p. 218], which is, presumably, a misprint. 
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THEOREM D. Let cY denote the closure of a sector of the unit disc which subtends 
an angle y > 2TDexp(,A) at the origin. Suppose that g(z), which is given by (7.3) in the 
neighborhood of the origin, is continuous on S and analytic on its interior. Then 

jcnj ? exp {a+3n + (k(n)-ko(n))n} max I g(z)j, 
ze.r 

where ao and , are positive constants which depend only on the set A and the sector cY 
and k(x) = (y/IT) log x - A(x). 

Theorem 6 is now readily proved. If y > 27Dt(A) then the function k(x) is asymp- 
totically increasing-i.e. k(n) - ko(n) is bounded. In view of (7.2) we may apply 
Theorem D to the function g(z) =f(Rz) for an arbitrary value of R>0. We obtain 
that, for an appropriate constant a, 

M(aR,f) _ max jf(Rz)j (R > 0). 
zeY 

The assumption that f(z) has h-order p in an angle of opening y then yields the 
required result. Theorem C is proved similarly (see [11, p. 233]). 
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