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Running title:  The search for the meaning of life in soil 

Summary 

The introduction of impressive technologies in the search for life’s diversity and activity in soil 

has led to impressive new techniques and knowledge concerning the soil microbial community; 

with some important links to function found.  However, we attest that the general lack of 

causality found between the many diversity/numbers metrics of soil microbes and function is 

due, at least in part, to the lack of understanding of the microbial populations/dynamics links to 

their physical habitat and attendant moisture conditions.  In this opinion paper we explore the 

importance of this interplay between organism and habitat.  Further, as an example of this 

interplay, we introduce the potential importance of nematode movement and gene transfer in 

bacterial populations.  

This is the pre-peer reviewed version of the following article: The search for the meaning of life in soil: an 
opinion Bengough, A. & Young, I. M. 18 Jan 2018 In : European Journal of Soil Science., which has been 
published in final form at 10.1111/ejss.12514/epdf.  This article may be used for non-commercial purposes 
in accordance with Wiley Terms and Conditions for Self-Archiving."
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Highlights 

 

• The importance of the physical habitat is highlighted in soil microbiology studies 

• The interplay between the soil-root-habitat is emphasized. 

• Seeking a functional understanding of biodiversity rather than a ‘biology of numbers and 

differences’ approach is highlighted. 

• The movement of nematodes with respect to Horizontal Gene Transfer is discussed. 

 

 

Context 

The factors affecting the survival of a bacterium or fungi in soil are surprisingly similar to those 

affecting our own survival on Earth.  We all rely on sufficient flow of gas into and from our 

bodies for adequate respiration.  We need refuge to shelter from adverse environments and from 

biological intruders.  Access to sufficient resources, water and food is key, as is the ability to 

move when required.  Proximity to similar biological organisms is desirable for protection and 

gene transfer.  Connecting such general statements to specific operational functions in the soil 

environment, however, is a difficult task. 

 

Much effort and research money have been invested in describing and measuring the soil 

microbial population and in particular aspects of microbial biodiversity.  Within soil science, the 

greatest scientific investment has gone into these biodiversity areas in the past few decades, and 
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by a substantial margin.  The arguments that justify such research often appeal to ‘common 

sense’ (perhaps, teleo)logic: soil contains the world’s greatest diversity of micro-organisms and 

this diversity itself must be related to important soil functions, such as carbon sequestration and 

decomposition, and plant production. Further links are often inferred to aspects of soil health and 

sustainability.  

 

The search for ‘meaning’ in the many soil–omics technologies when applied to soil microbial 

communities continues unabated: for instance, how can we connect what we measure to what we 

can control to the benefit of plant production, in the case of agriculture, or species diversity, in 

the case of ecological concerns.  Nannipieri et al., (2003) list and comment on 16 methods to 

measure microbial activity and in their recent reflections on their paper (Nannipieri et al., 2017) 

they comment that even with such an array of accessible methods there must be a mix of 

methodologies that quantify microbial activity and composition. However, it is our contention 

that, despite the significant improvement in many of these technologies, such approaches will 

always be doomed to failure when we seek to link the many metrics of biodiversity and or 

activity to function.  For without the link to the physical habitat that imposes heterogeneity on all 

life in soil, no diversity–function link will be possible.  Below, we develop our rationale that 

seeks to encourage a more multidisciplinary approach to seeking the ‘meaning’ of life in soil, 

both from an experimental and theoretical point of view, with a focus on soil physics. 

 

Background 

Research on soil microorganisms is long established. Ackert (2006) summarizes the work of 

Sergei Vinogradskii in soil microbiology from the 1890s through to 1910. A review of Google 
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Scholar (February 16, 2017) returns on the phrase “soil microorganisms” emphasizes such early 

interest with 10 noted publications up to 1900, rising to just above 500 in 1950.  Bhaumik’s PhD 

thesis on the subject of “Soil moisture tension and microbiological activity” (Bhaumik, 1947) 

cites 40 references, including research that links bacteria to soil water and one related to a very 

early paper on soil bacteria and evaporation (Hoffman, 1912, cited by Bhaumik, 1947).  In the 

1980s and 1990s, investment in the general area of soil microbiology increased greatly. 

Interestingly, “soil biodiversity” appears in Google Scholar for the first time in 1926 with one 

publication; the number of publications rose substantially between 2010 and 2017.     

 

This focus of activity in this area of soil science has had important successes: a deeper 

understanding of the diversity of microbial communities and how they change over time and in 

response to environmental perturbations, and the development of impressive new technologies to 

observe and measure (at least in a semi-quantifiable manner) related metrics.  For example, in 

ground-breaking research Fierer & Jackson (2006) related phylotype richness and diversity 

(Shannon index), at large spatial scales, to a single variable, soil pH on 98 soil samples from a 

wide range of ecosystem types. Treves et al. (2003) measured for the first time the role of spatial 

isolation in microbial diversity in unsaturated sand systems. 

 

Turbe et al. (2010), however, in perhaps the most exhaustive analysis and review of research on 

soil biodiversity gave a more sobering analysis of the large body of research; they observed no 

consistent links between soil species diversity and function. Aside from research on the many 

soil pathogens, this statement holds true today.  Although, Ritz (2014) states that soil microbes 

“undoubtedly play a principal role in crop productivity”, it seems less obvious that this holds in 
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intensive cropping systems where pharma-agriculture, a reliance on synthetic chemical inputs, 

prevails. Furthermore, serious doubts remain about the various mechanisms that control 

biodiversity, how such biodiversity links with soil function and importantly how such 

discoveries can be used in agriculture and ecological management. The statement by Turbe et al. 

(2010) emphasizes what has become a ‘biology of numbers and differences approach’ in soil 

biodiversity research: add a chemical, put in a perturbation, look at changes in land use, plant use 

and see if we can find a correlation with some aspect of the microbial community.   

 

Ranjard et al. (2010) in a review of the French National Initiative on biodiversity of soil 

microbial communities state that “soil diversity could be linked to soil functioning to improve 

management and protection…of soil.”  One would imagine that is one of the main reasons for 

research into soil diversity, rather than simply a statement of possibility. Nannipieri et al. (2003) 

state that “The central problem posed by the link between microbial diversity and soil function is 

to understand the relations between genetic diversity and community structure and between 

community structure and function.”  They state that this lack of understanding appears to be 

solvable, at least partly, by better assays and techniques that can determine inactive and active 

microbial cells in soil.  Prosser et al. (2003), however, are correct in stating that “..advances in 

microbial ecology are limited by a lack of conceptual and theoretical approaches” and that the 

over reliance on new technologies alone might lead to expensive and functionally redundant 

research that leads nowhere, and where even the journey rather than simply the final destination 

is worthless.  It is possible that the advance in ecological theory in aboveground systems results 

from the intimate, observable, link between biological activity and the physical habitat.  In soil, 

this link is far harder to observe and measure. Although there have been some ‘form to function’ 
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successes in biodiversity research, they are but a very small percentage of the total given the 

large concentration of scientific and financial resources invested.   

 

Soil biodiversity research, however, is not alone in having this problem.  Philip (1991), in 

relation to the increasing use of modelling over experimentation in soil science, states that soil 

scientists increasingly “presented themselves as computer bound, incurious about real-world 

phenomena and innocent of laboratory and field skills…” and bemoans the lack of real advances 

in understanding of water flow in soils. 

 

 

Finding a home for the microbial diversity 

Soil biodiversity science seems to be evolving into ‘soil microbiome’ research; there were 1260 

publications between 2010 and 2017 and seven publications between 1990–2000 (Google 

Scholar, February 16, 2017).  Here the term microbiome is defined as “… a characteristic 

microbial community occupying a reasonably well defined habitat which has distinct physio-

chemical properties. The term thus not only refers to the microorganisms involved but also 

encompasses their theatre of activity.”  (Whipps et al., 1988).  To achieve substantial advances, 

this new approach must represent more than mere textual camouflage for future plans to avoid 

doing much the same type of research. Unfortunately, evidence suggests that although there are 

strong research publications the desire to link the soil microbiome causally to soil function 

appears as problematic as linking function to biodiversity, and partial correlations or trends seem 
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to be a typical result. Perhaps, however, hope is warranted.  The term ‘biome’ potentially 

promises a better connection to microhabitats which, in soil, are linked implicitly to microbial 

activity, yet this link is often forgotten (Young & Crawford, 2004).  Where habitat is mentioned 

in past publications it is generally in the context of artificial ‘aggregates’ that are prevalent in 

laboratory microcosms, but are rare in most field systems. We use such systems to help us 

smooth out any variation that would ‘mask’ the differences in responses by plants and or 

microbes to a wide variety of internal and external perturbations.  The reality is that the attempt 

to link the presence and activity of microbial communities functionally to a wide range of 

functions that translate to field conditions has largely failed. Clearly, fundamental research in 

many areas does not translate easily to new products or indeed new knowledge.  Therefore, 

biodiversity research is not alone in that respect, because we are dealing with the most complex 

biomaterial on the planet, soil.  

 

It is clear that the research community has been very good at quantifying and exploring 

biodiversity in soil microbial communities.  Now our lens into the life of microbial populations is 

much more focused due to the development of new hardware and molecular technologies. 

Nevertheless, our understanding of how such microbial diversity links to function remains poor.  

The paucity of such formal links of diversity with function might arise because the examination 

of microbial populations is isolated from their physical environment. The interconnections of 

microbial activity, habitat and water might be the key to gaining a far better, fuller and causal 

understanding of how important microbial populations and their actions are for the terrestrial 

biosphere. 
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There is a growing body of evidence that emphasizes the importance of linking habitat micro-

habitat with biodiversity.  Lennon et al. (2012), in an interesting mapping exercise of niche space 

of soil microbes, examined optimal matric potentials for soil microbes in terms of respiration. 

Indeed, Terves et al. (2013) linked hydraulic connectivity (i.e aquatically connected or 

disconnected) of pores through to spatial isolation and the generation of microbial diversity in 

sand.  Ramette et al. (2009) in a mini-review discussed microbial habitats in relation to microbial 

diversity and abundance from a statistical viewpoint. Papers from Dani Or’s group in ETH 

Zürich focus on the fundamental mechanistic relations between habitat, water and bacteria (e.g. 

Tecon & Or, 2016; Ebrahimi & Or, 2015), both from an experimental and modelling perspective. 

Manzoni et al. (2012) present compelling evidence, through meta-analysis, that links the changes 

in matric potential and reduced microbial activity to water potential thresholds where physical 

constraints (diffusion) have the defining effect on microbial activity. This research has a direct 

link to that of Linn & Doran (1984) on the effect of water-filled pore space (WFPS) on the 

production of CO2 and N2O in tilled and non-tilled soil in which they postulated threshold limits 

of microbial activity and function on WFPS.  

 

It is clear that the habitat and attendant water films play crucial roles in the activity of microbes 

and are vital to take account of in terms of the creation and sustainability of biodiversity, and 

how such ‘diverse’ metrics can be linked to function.  However, what is the actual microbial 

habitat and why does it matter in respect to microbial activity and function? 

 

The microhabitat of microbes 
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Soil, at any scale is complex: opaque, composed of a myriad of organo-minerals, roots, large and 

small organisms, and exhibits truly impressive gradients in its biology, chemistry and physics 

over large and small spatial ranges. It represents the most complex 3-D architecture known, 

which, because of clay minerals, can ‘shape-shift’ its geometry and thus its function, simply by 

the addition or subtraction of water and solutes.  

 

Microbes, by definition, live and organize themselves at small scales. Fungi, on the other hand, 

are indeterminate organisms that can cast their bodies far and wide, but like bacteria are still 

constrained by the habitat they live in (Toyota et al., 1996).  It also appears that whilst this 

complex physical architecture imposes constraints on microbiological activity, the architecture is 

markedly affected by the activity of the microbes (Young & Crawford, 2004), and the soil–

plant–microbe complex can be defined as a self-organized system where in some cases fungi 

dominate in terms of habitat design (Feeney et al., 2003).  In combination, water and architecture 

have prime positions? as factors in controlling the location of microbes, the flow and activity of 

individual and populations of microbes, and the diffusion of gas (Young & Ritz ,1998). We have 

few technologies that can see microbes directly in soil.  Impressive biological thin sections and 

nano-sims techniques (e.g. Nunan et al., 2001; Herrmann et al., 2007) have been developed that 

have revealed fascinating data on the spatial distribution of bacteria and fungi. However, these 

are limited to 2-D, which will always leave us wondering what is ‘going on round the corner’ in 

3-D.  Microbes are too small to be seen by any magnetic resonance imaging (MRI) or micro-

computed aided tomography (µCT) systems, and so we have no technology that can reveal how 

they behave in real-time at the micro-habitat scale.  Fungi, which are larger in size, suffer from 

much the same limitations.  Added to these problems, it is clear that apart from hotspots (e.g. 

rhizosphere, organic debris) the soil is devoid of microbial life and even searching for them is 
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problematic unless we provide the system with food resources and wait. In soil, physics 

dominates the spatial distribution of microbes with between only 0.01 and 0.00001% of the 

surface area covered by any microbial form (Young & Crawford, 2004).  Such figures are 

usually not discussed. and the focus is typically on the absolute number of things and types, for 

eaxmple  prokaryotic abundance, largely bacterial (Torsvik et al., 2002) can be as large as 4.8 × 

109 to 2.1 × 1010 cells cm-3 with, in some cases, up to 8800 different species genomes.  

 

Where is the water? 

The soil moisture characteristic (SMC) reveals the interaction between water and the soil’s 

physical architecture by providing a unique dynamic fingerprint for any soil ecosystem that relies 

on the equilibration of soil at specific matric potentials. This characteristic not only provides 

information about the volume of water, but also its distribution within the 3-D soil and how, 

whether in an adsorption or desorption phase, that volume and distribution changes with time.  It 

defines the hydraulic and gaseous connectivity of the soil and thus the ease with which gases and 

water may flow. Connectivity is the key phase here because although resources are unevenly 

spread in soil, even close to a root, the potential connectivity of microbial communities to other 

communities and resources, and potential spread of fungal hyphae are intimately connected to 

the SMC, which also defines the thickness of the water films. Tecon & Or (2016) highlighted the 

importance of the thickness of water films on rough surfaces in relation to bacterial flagellar 

motility. They found that dispersal of bacteria and their mean velocity decreased rapidly between 

saturated (very connected) and unsaturated (–2kPa; and less connected) matric potentials on 

rough surfaces as the 2-D habitat became less hydraulically connected. Of course, the SMC can 

also exhibit considerable hysteresis.   
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Given that bacteria, protozoa and archaea are water-borne organisms, constricted in activity and 

movement to water-films or biofilms, the activity of such microbes is even less in terms of 

‘active’ micro-surface area. The soil may be teeming with life (Haq et al., 2014), but only around 

a series of spatially fragmented oases (Nunan et al., 2003). Communities in such cases exist in 

splendid isolation from others; perhaps they rarely mix or sense each other’s presence.  Such 

communities are linked spatially by water and solutes, but these fluid connections often fluctuate 

rapidly. Bacteria find it very difficult to move through a soil profile by mass flow alone, unless 

there are some large pores and a large volume of water is involved.  Water at these micro-scales 

exhibits some fascinating properties.  In an essay, Purcell (1977) discusses “Life at Low 

Reynolds number” and introduces Berg’s brilliant research on bacterial motility (eg. Berg, 1988, 

Blair & Berg, 1989, Wolfe & Berg, 1989).  Although Purcell’s essay is somewhat known in the 

soil physics literature, it is virtually unrecognized in molecular ecology. 

 

Water at small-scales has unusual properties that have a direct effect on the fecundity and 

activity of microorganisms.  Microbial life at the small scale takes place in liquids at low 

Reynolds number.  At these scales, because of the small Reynolds number, viscosity dominates 

the flow of moving objects in pore water (Hatton & Choset; 2013).  Therefore, rather than an 

image of a motile bacterium as a human swimming in water, imagine yourself wading through 

treacle to obtain a better idea of the fluid drag forces acting on microbes as they try to move. 

This small-scale environment where viscosity dominates means that it is very difficult for a 

superficially motile microbe to escape its local environment.  From a bacterium’s viewpoint, 

sitting still might be an evolutionary advantage if sufficient local resources diffuse to you: an 

exploitation strategy.  However, where resources are spatially isolated and not locally available, 

then moving to ‘greener pastures’ conveys an important evolutionary advantage that a motile 
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organism can take advantage of: a combined exploitation and exploration strategy.  Therefore, a 

pore-water environment with a small Reynolds number might allow the existence of both motile 

and non-motile bacteria. This is not new knowledge in the sense that we already know that 

different strategies for movement are expressed in bacteria and other microbes. What is 

interesting is that we can relate the evolution of those strategies to the physics of the growing 

medium (Purcell, 1977), and perhaps now also approach the question of what can we do to 

manipulate this local environment to improve specific functionality? The interaction between 

soil microbes and both roots and soil fauna exert a major effect on the soil environment at small 

scales. 

 

 

Add the exploring root 

One area in soil microbiology and biodiversity that is still relatively unexplored is the effect of 

the plant root on the engineering of the (micro-)habitat space as new soil is explored and a new 

rhizosphere is generated and colonized (Watt et al., 2006).  With a new focus on rhizosheaths, 

this area is expanding to take into account the role of both root hairs and mucilage.  Once a root 

has initially penetrated a new region of the soil matrix or biopore, everything that enters or 

leaves the root must do so through the root–soil interface, making its properties of great 

importance. The biophysical nature of the interface does not remain static however, but changes 

continually with the prevailing soil water regime, the age and development stage of the root 

tissue, and with microbial activity that is powered substantially by the release of carbon from the 

root itself. A conceptual illustration of the microhabitat of soil before, during and after a root 

elongates into a soil volume is provided in Figure 1.  The root–mycorrhizal fungal conceptual 
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model, partly derived from Jones et al. (2004), shows that the root exerts pressure on the 

surrounding soil and creates a markedly different habitat for microbes to colonize and spread. 

The key aspect of this model is recognition of the temporal dynamics and how the root may 

leave a legacy in terms of newly formed habitats with very different characteristics, including 

different microbial loadings.  

 

We know from a large portfolio of research papers the ‘before and after’ of rhizosphere and bulk 

soil in terms of types and numbers of microbes before and after perturbations.  Less clear is the 

functionality of these two different soil volumes, which is only now becoming clearer in terms of 

water regime and physical architecture. 

 

 

The root itself exerts substantial control over its local environment by modifying chemical and 

water-retention properties through the release of polysaccharide gel, phospholipids, sugars and 

amino acids. Substantial progress has been made recently in understanding the complex relations 

between exudation and water, following surprising observations that soil water content of 

rhizosphere soil may be wetter than bulk soil (Young, 1995) and that root exudates may change 

the water retained in the rhizosphere at a given suction (e.g. Read et al., 2003). The combined 

‘cocktail’ of exudates released by roots amplifies the hysteresis-like behaviour of the rhizosphere 

soil; polysaccharide mucilages probably make the soil around the root slower to dry (i.e. 

decrease in water content), whereas it is more difficult to rewet once it has dried especially 

adjacent to older roots (Carminati, 2013). Undoubtedly, this has consequences for water uptake 

by crop root systems in the field and for soil microbial activity. Whether it also represents a 

rhizosphere trait that could be mapped genetically and manipulated to increase crop productivity 
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remains uncertain. The presence of mucilage also changes the way in which soil structure 

develops around roots during successive wetting and drying cycles, the way that a root tip shears 

and deforms the soil as it penetrates and the adherence of soil particles to root hairs. 

 

Roots increase the area of intimate contact between root tissue and the soil particles by growing 

numerous root hair projections, typically around 10 μm in diameter, but potentially extending 

several millimetres into the rhizosphere. These root hairs increase the effective radius of the root 

and facilitate the uptake of nutrients and water (Nye & Tinker, 2000). Interestingly, although 

there is a great deal of knowledge about the growth of root hairs and their function in idealized 

experimental conditions (e.g. Arabidopsis thaliana on gel), relatively little is known about the 

growth of root hairs and their function for field crops in soil environments. Understanding of the 

dynamics of root colonization remains poor, although Watt et al. (2006) clearly demonstrated 

that this is likely to be strongly affected by the properties and expansion of the root surface, 

including the exuding sloughing root cap with the zone of extension and root hair zone behind.  

As roots penetrate within soil structural pores, root hairs serve a much-neglected physical 

function in anchoring the root tip to pore walls, giving the root tip a reaction force to push 

against as cells in the elongation zone expand (Bengough et al., 2016). This can enable root tips 

to grow from loose soil regions into strong soil layers more successfully (Haling et al., 2013). 

The anchorage of soil particles to the root is apparent when the rhizosheath of soil adheres tightly 

to root hairs, despite physical shaking (George et al., 2014). There is potential to use rhizosheath 

mass per length of root to provide a rapid measure of root hair growth and interaction with the 

soil around the root, and there are quantitative trait loci (QTLs) associated with rhizosheath 

production in both barley and wheat (George et al., 2014; Delhaize et al., 2015). This makes root 
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hair and root exudate traits a possible target for plant breeders, whereas direct screening of the 

growth of root hairs is currently too tedious to screen many lines in large genetic populations. 

 

 

The biased uber nematode taxi (BUNT) hypothesis and gene transfer in bacteria 

The research of Wallace (1958) on the movement of Caenorhabditis elegans provides a good 

overview of the importance of the physics of soil, specifically water films for soil biology and 

potentially has an important link to microbial dispersion, activity and horizontal gene transfer. 

Wallace (1958) in a classical set of experiments on agar, saturated soil and monolayers of soil 

particles emphasized the importance of the thickness of water films to define the spread of 

nematodes, and also the role of soil structure in nematode movement and dispersal. Wallace 

showed that nematode forward movement is maximal when the water film clings tightly and 

covers the body of the nematode, minimizing sideways movement:  the agents that the 

nematodes sense force them to move in certain directions.  The ‘taxis’ of nematode movement is 

an interplay between that hydraulic connectivity and water-film thickness together with the 

diffusion of volatile compounds through the unsaturated pore space. Once the nematode senses 

the volatile substances, it may react by changing direction towards the largest concentration of 

volatiles, which in this scenario would be bacteria in the rhizosphere.  

 

 

With a parallel biophysical theoretical and experimental approach, Anderson et al. (1998a,b) 

showed through  2-D simulations and experiments that the diffusion gradient within a complex 

heterogeneous structure is highly variable, as is the hydraulic connectivity.  Consider the actions 
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of a nematode.  Driven to find food reserves, it forages in an exploration phase, searching for 

clues to the location and type of food available in a 3-D unsaturated maze. As a root grows into 

the soil (see Figure 1), it exudes a range of possible food sources for the nematode population at 

some distance from the root–soil interface.  At this point the nematode’s movement is restricted 

solely by the connectedness and thickness of water films, and it moves in a random exploratory 

manner. A diffusion gradient developed from the root–soil interface spreads out from the 

rhizosphere volume, depending on the gaseous diffusion of attractants in the volatile phase.  The 

matric potential of soil water controls the degree of diffusion by determining the air-filled 

conduits through which the volatiles spread: gaseous diffusion changes by orders of magnitude 

when a wet soil drains to become dry.  At some point, above a certain threshold concentration, 

the nematode will sense the gradient and attempt to move in the direction of the source using 

biased random-walk strategies.  However, it has to use a quasi-random strategy because of the 

intricacies of how the soil architecture and attendant moisture interact to affect the chemotaxis 

process. Nematodes move in a sinusoidal fashion, snake-like within water films―they have to, 

to overcome a fluid that is characterized by a low Reynolds Number. Unlike snakes, however, 

nematodes can reverse, which is useful in their complex world where dead-end narrow pore 

necks are the norm. This is where nematodes have to shift from a directed movement in response 

to volatile compounds that pour through the soil architecture at scales smaller than the 

dimensions of the nematode.  If the nematode could not switch to a random motion and find a 

route around the blocked maze, it would be stuck behind small inaccessible pores:  much like the 

‘dead man’s handshake’ experienced by unfortunate divers stranded in submerged caves.  Thus, 

the reversing of a nematode shows neatly how the complexity of any architecture affects gas 

diffusion and the activity of organisms in the soil. An interesting question is: how does a 

nematode manage such a coordinated set of movements when it is assumed that the movement is 
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linked to a taxis process governed by the diffusion of volatiles through the soil? What makes the 

nematode so positionally aware? Of course we know that nematodes are not the only biological 

actors involved in transporting bacteria in soil. However, the key characteristic of nematodes is 

that they are excellent integrators of the soil architecture, water and its combined function; they 

sense at the molecular scale, feed at the microbial scale and move at the metre scale. Thus they 

are perhaps a unique biological integrator of soil biophysical systems across so many scales. 

 

 

It is reasonably well understood how soil architecture and attendant moisture feature in the 

probability of horizontal gene transfer (HGT).  The dissimilarity between bacterial species 

increases where water films are discontinuous or where soil structural attributes deny the 

movement of bacterial species within the soil.  However, another factor might help explain HGT 

within complex soil systems.  The chemotaxis process of nematodes, explained above, relies on 

the detection of a diffusion gradient from a bacterial source to the spatial position of the 

nematode.  Consider a nematode moving towards a colony of bacterial species, A; the nematode 

will consume the bacteria on contact and, depending on bacterial density, might have a 

considerable amount of bacteria adhering to its own exterior.  At this point, the volatile diffusion 

gradient will not be present as it will be locally equilibrated around the biochemical receptors of 

the nematode. Within a short period, the nematode will then revert to random movement, seeking 

additional food resources some distance from bacterial species A, but unable to identify 

additional populations of the species A that emits the cocktail of volatiles that it used to detect 

them.   Rodgers et al. (1998) observed such a trait in C.elegans populations after they were fed 

Escherichia .coli. They termed the observations ‘substrate legacy’ because the initial substrate of 
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the nematodes had a functional effect on the ability of that population to recognize and source a 

range of bacterial populations. 

 

In terms of the probability of HGT in soil, the substrate legacy hypothesis, which has been 

observed in other higher order organisms, presents interesting insights. The separation of large 

portions of bacteria in soil suggest small probabilities of HGT. Indeed, given that active bacterial 

populations are often spatially isolated from one another, it is clear that an alternative HGT 

catalyst must be present to ensure HGT occurs.  In this case, the nematodes may be likened 

essentially to symbiotic biased Uber taxis in soil.  The bacteria, emitting volatiles, ‘call’ the 

nematodes to their location.  The diffusion gradient (akin to the the taxi’s GPS navigation 

system) signposts pathways towards the bacterial resource.  On contact, the nematodes feed on 

the bacteria.  Then, disregarding calls from similar bacteria, they recognize incoming calls only 

from a different bacterial population.  The initial population is transported distances within soil 

that they would never be able to move to either on their own or by mass flow to other bacterial 

populations.  The nematode not only ingests the next bacterial population, but mixes different 

bacterial species in the same location.  The probability of gene transfer between populations is 

potentially increased as is the functional engineering of bacterial populations.  The question 

arises as to what happens to bacterial diversity and functioning in soil where nematode taxis are 

sparse.  We term this the Biased Uber Nematode taxi (BUNT). Does the Uber nematode decrease 

or increase diversity?  Does it matter functionally at the management scale? Indeed, what 

happens genetically to nematodes who carry ‘passenger’ microbial genes across the soil’s 

interior landscape?  If true, the proposed BUNT process is potentially a powerful mechanism by 

which we can encourage microbial engineering of HGT in situ at the micro-habitat scale with 

potentially large effects on microbial function in soil. 
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Epilogue 

Decades ago, the soil science and ecological community embraced the various -omics techniques 

used in soil science.  An avalanche of publications has followed and our knowledge of the 

microbial population in soil has increased rapidly and massively. What has followed, however, 

can be best described as incremental improvements in our understanding of the functionality of 

the soil’s microbial communities. Molecular technologies are vitally important, but, used in 

isolation from a deep understanding of the micro-ecology of communities, their use is limited. 

Integrating our new knowledge of the physical world of microbes offers us an unprecedented 

opportunity to close this knowledge gap by looking at the soil microbial community in the 

context of the complex system that it lives in.  

 

As Wardle & Giller (1996) observed, pre-2000 we were bereft of any serious, sustained, 

development of theory related to soil molecular ecology and indeed related to the general soil–

plant–microbe system. More recently Prosser et al. (2007) eloquently repeated and added to that 

statement.  

 

We contend that the success of developments of ecological theory in aboveground terrestrial 

ecology has resulted substantially from the readily observed and intimate link between organism 

and habitat space. With more connections established between soil microbial diversity and 

micro-habitats, this should facilitate advances in theory.  
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Habitat and water are key ingredients to achieve a fuller understanding of how soil biodiversity 

links with soil functioning.  We must resist the temptation to be too technology driven and seek 

to understand better the interactions between physics, biology and indeed chemistry of the soil. 

all within a dynamic theoretical framework. Soil microbes operate in the most complex 

environment on the planet and our studies must somehow reflect and take account of this 

complexity.  What we do not need is a continuation of the biology of numbers and differences 

approach, across any aspect of soil science, but in particular soil microbiology.  Sufficient 

examples of before and after papers already exist to provide adequate illustration for many 

different environments.   
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Figure caption 

Figure 1. Conceptualized single root exploration in heterogeneous soil, adapted from concepts 

in Jones et al., (2004; Figure 3).  (a) Bulk soil with microbial loading of fungi (brown filaments - 
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arrow) and bacteria (blue mats - arrow), (b) root tip covered in mucilage enters bulk soil volume 

reassembling soil at the root–soil interface, (c) elongation of root with different microbial 

loadings and proliferation of both fungal hyphae and microbial colonies (arrows) that extend 

axially and radially through the soil volume. Root hairs evident on root (arrow), (d) root exiting 

soil volume, e root senescence on-going, leaves gaps around root (arrow), (f) root leaves a 

legacy of its presence with a physical biopore, (g) structure around the legacy rhizosphere 

changes and partially collapses (arrow) because of wetting and drying cycles and biophysical 

perturbation and (h) a new root entering the soil volume.  The cycle repeats. 
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