30 research outputs found

    Non-linear spin wave theory results for the frustrated S = 1/2 Heisenberg antiferromagnet on a body-centered cubic lattice

    Full text link
    At zero temperature the sublattice magnetization of the quantum spin-1/2 Heisenberg antiferromagnet on a body-centered cubic lattice with competing first and second neighbor exchange (J1 and J2) is investigated using the non-linear spin wave theory. The zero temperature phases of the model consist of a two sublattice N\'{e}el phase for small J_2 (AF_1) and a collinear phase at large J_2 (AF_2). We show that quartic corrections due to spin-wave interactions enhance the sublattice magnetization in both the AF_1 and the AF_2 phase. The magnetization corrections are prominent near the classical transition point of the model and in the J_2> J_1 regime. The ground state energy with quartic interactions is also calculated. It is found that up to quartic corrections the first order phase transition (previously observed in this model) between the AF_1 and the AF_2 phase survives.Comment: 6 pages, 3 figure

    Ginzburg-Landau theory of vortices in a multi-gap superconductor

    Full text link
    The Ginzburg-Landau functional for a two-gap superconductor is derived within the weak-coupling BCS model. The two-gap Ginzburg-Landau theory is, then, applied to investigate various magnetic properties of MgB2 including an upturn temperature dependence of the transverse upper critical field and a core structure of an isolated vortex. Orientation of vortex lattice relative to crystallographic axes is studied for magnetic fields parallel to the c-axis. A peculiar 30-degree rotation of the vortex lattice with increasing strength of an applied field observed by neutron scattering is attributed to the multi-gap nature of superconductivity in MgB2.Comment: 11 page

    Evaluation of Spin-Triplet Superconductivity in Sr2RuO4

    Full text link
    This review presents a summary and evaluations of the superconducting properties of the layered ruthenate Sr2RuO4 as they are known in the autumn of 2011. This paper appends the main progress that has been made since the preceding review by Mackenzie and Maeno was published in 2003. Here, special focus is placed on the critical evaluation of the spin-triplet, odd-parity pairing scenario applied to Sr2RuO4. After an introduction to superconductors with possible odd-parity pairing, accumulated evidence for the pairing symmetry of Sr2RuO4 is examined. Then, significant recent progress on the theoretical approaches to the superconducting pairing by Coulomb repulsion is reviewed. A section is devoted to some experimental properties of Sr2RuO4 that seem to defy simple explanations in terms of currently available spin-triplet scenario. The next section deals with some new developments using eutectic boundaries and micro-crystals, which reveals novel superconducting phenomena related to chiral edge states, odd-frequency pairing states, and half-fluxoid states. Some of these properties are intimately connected with the properties as a topological superconductor. The article concludes with a summary of knowledge emerged from the study of Sr2RuO4 that are now more widely applied to understand the physics of other unconventional superconductors, as well as with a brief discussion of relatively unexplored but promising areas of ongoing and future studies of Sr2RuO4.Comment: 31 pages, 35 figures, published in J. Phys. Soc. Jpn. as a review article of Special Topic
    corecore