26 research outputs found

    Evaluation of Methodologies for Microrna Biomarker Detection by Next Generation Sequencing

    Get PDF
    In recent years, microRNAs (miRNAs) in tissues and biofluids have emerged as a new class of promising biomarkers for numerous diseases. Blood-based biomarkers are particularly desirable since serum or plasma is easily accessible and can be sampled repeatedly. To comprehensively explore the biomarker potential of miRNAs, sensitive, accurate and cost-efficient miRNA profiling techniques are required. Next generation sequencing (NGS) is emerging as the preferred method for miRNA profiling; offering high sensitivity, single-nucleotide resolution and the possibility to profile a considerable number of samples in parallel. Despite the excitement about miRNA biomarkers, challenges associated with insufficient characterization of the sequencing library preparation efficacy, precision and method-related quantification bias have not been addressed in detail and are generally underappreciated in the wider research community. Here, we have tested in parallel four commercially available small RNA sequencing kits against a cohort of samples comprised of human plasma, human serum, murine brain tissue and a reference library containing ~ 950 synthetic miRNAs. We discuss the advantages and limits of these methodologies for massive parallel microRNAs profiling. This work can serve as guideline for choosing an adequate library preparation method, based on sensitivity, specificity and accuracy of miRNA quantification, workflow convenience and potential for automation

    Biomarker potential of extracellular miRNAs in Duchenne Muscular Dystrophy

    No full text
    miRNAs are small, noncoding RNAs that not only regulate gene expression within cells, but might also constitute promising extracellular biomarkers for a variety of pathologies, including the progressive muscle-wasting disorder Duchenne Muscular Dystrophy (DMD). A set of muscle-enriched miRNAs, the myomiRs (miR-1, miR-133, and miR-206) are highly elevated in the serum of patients with DMD and in dystrophin-deficient animal models. Furthermore, circulating myomiRs might be used as pharmacodynamic biomarkers, given that their levels can be restored towards wild-type levels following exon skipping therapy in dystrophic mice. The relationship between muscle pathology and extracellular myomiR release is complex, and incompletely understood. Here, we discuss current progress leading towards the clinical utility of extracellular miRNAs as putative DMD biomarkers, and their possible contribution to muscle physiology

    Biomarker potential of extracellular miRNAs in Duchenne Muscular Dystrophy

    Get PDF
    miRNAs are small, noncoding RNAs that not only regulate gene expression within cells, but might also constitute promising extracellular biomarkers for a variety of pathologies, including the progressive muscle-wasting disorder Duchenne Muscular Dystrophy (DMD). A set of muscle-enriched miRNAs, the myomiRs (miR-1, miR-133, and miR-206) are highly elevated in the serum of patients with DMD and in dystrophin-deficient animal models. Furthermore, circulating myomiRs might be used as pharmacodynamic biomarkers, given that their levels can be restored towards wild-type levels following exon skipping therapy in dystrophic mice. The relationship between muscle pathology and extracellular myomiR release is complex, and incompletely understood. Here, we discuss current progress leading towards the clinical utility of extracellular miRNAs as putative DMD biomarkers, and their possible contribution to muscle physiology

    Extracellular microRNAs exhibit sequence-dependent stability and cellular release kinetics

    No full text
    Multiple studies have described extracellular microRNAs (ex-miRNAs) as being remarkably stable despite the hostile extracellular environment, when stored at 4ÂșC or lower. Here we show that many ex-miRNAs are rapidly degraded when incubated at 37ÂșC in the presence of serum (thereby simulating physiologically relevant conditions). Stability varied widely between miRNAs, with half-lives ranging from ~1.5 hours to more than 13 hours. Notably, ex-miRNA half-lives calculated in two different biofluids (murine serum and C2C12 mouse myotube conditioned medium) were highly similar, suggesting that intrinsic sequence properties are a determining factor in miRNA stability. By contrast, ex-miRNAs associated with extracellular vesicles (isolated by size exclusion chromatography) were highly stable. The release of ex-miRNAs from C2C12 myotubes was measured over time, and mathematical modelling revealed miRNA-specific release kinetics. While some ex-miRNAs reached the steady state in cell culture medium within 24 hours, the extracellular level of miR-16 did not reach equilibrium, even after 3 days in culture. These findings are indicative of miRNA-specific release and degradation kinetics with implications for the utility of ex-miRNAs as biomarkers, and for the potential of ex-miRNAs to transfer gene regulatory information between cells

    Uniform sarcolemmal dystrophin expression is required to prevent extracellular microRNA release and improve dystrophic pathology

    No full text
    Background Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by genetic loss of dystrophin protein. Extracellular microRNAs (ex-miRNAs) are putative, minimally invasive biomarkers of DMD. Specific ex-miRNAs (e.g. miR-1, miR-133a, miR-206, and miR-483) are highly up-regulated in the serum of DMD patients and dystrophic animal models and are restored to wild-type levels following exon skipping-mediated dystrophin rescue in mdx mice. As such, ex-miRNAs are promising pharmacodynamic biomarkers of exon skipping efficacy. Here, we aimed to determine the degree to which ex-miRNA levels reflect the underlying level of dystrophin protein expression in dystrophic muscle. Methods Candidate ex-miRNA biomarker levels were investigated in mdx mice in which dystrophin was restored with peptide-PMO (PPMO) exon skipping conjugates and in mdx-Xist(Delta hs) mice that express variable amounts of dystrophin from birth as a consequence of skewed X-chromosome inactivation. miRNA profiling was performed in mdx-Xist(Delta hs) mice using the FirePlex methodology and key results validated by small RNA TaqMan RT-qPCR. The muscles from each animal model were further characterized by dystrophin Western blot and immunofluorescence staining. Results The restoration of ex-miRNA abundance observed following PPMO treatment was not recapitulated in the high dystrophin-expressing mdx-Xist(Delta hs) group, despite these animals expressing similar amounts of total dystrophin protein (similar to 37% of wild-type levels). Instead, ex-miRNAs were present at high levels in mdx-Xist(Delta hs) mice regardless of dystrophin expression. PPMO-treated muscles exhibited a uniform pattern of dystrophin localization and were devoid of regenerating fibres, whereas mdx-Xist(Delta hs) muscles showed non-homogeneous dystrophin staining and sporadic regenerating foci. Conclusions Uniform dystrophin expression is required to prevent ex-miRNA release, stabilize myofiber turnover, and attenuate pathology in dystrophic muscle.Functional Genomics of Muscle, Nerve and Brain Disorder

    Role of L-type calcium-channel modulation in nonconvulsive epilepsy in rats

    Get PDF
    Contains fulltext : 28624.pdf (publisher's version ) (Open Access)Old male Wistar rats spontaneously showing hundreds of spike-wave discharges daily were used to investigate the role of calcium ions in nonconvulsive epilepsy. The effects of the L-type calcium channel blocker nimodipine and the L-type channel opener BAY K 8644 on number and duration of these spike-wave discharges were investigated. In rats aged 84-94 weeks standard EEG electrodes were chronically implanted; animals were allowed to recover for 10 days. After a baseline registration, nimodipine 2.2, 8.8, and 35.2 mg/kg or BAY K 8644 in dosages of 0.12, 0.47, and 1.88 mg/kg was administered. A control group received the solvent. EEG recordings were made to evaluate drug effects. The highest dose of nimodipine increased the number of spike-wave discharges, whereas BAY K 8644 reduced the number of spike-wave discharges dose dependently. The highest dose of BAY K 8644 also induced fatal convulsions in 3 animals. Our results demonstrate that the L-type calcium antagonist nimodipine facilitates spike-wave discharges and that the L-type calcium agonist BAY K 8644 protects against these discharges, in contrast to previous results suggesting that calcium channel blockers act as antiepileptic drugs (AEDs) and that calcium channel openers act as convulsants. Our results are a further example of the different pharmacologic profile of convulsive and nonconvulsive epilepsy and are also in contrast to what has been described for T-type calcium channel modulation. We therefore propose that modulation of L-type and T-type calcium channels have opposite effects in nonconvulsive epilepsy
    corecore