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ABSTRACT
In recent years, microRNAs (miRNAs) in tissues and biofluids have emerged as a new class of promising
biomarkers for numerous diseases. Blood-based biomarkers are particularly desirable since serum or plasma
is easily accessible and can be sampled repeatedly. To comprehensively explore the biomarker potential of
miRNAs, sensitive, accurate and cost-efficient miRNA profiling techniques are required. Next generation
sequencing (NGS) is emerging as the preferred method for miRNA profiling; offering high sensitivity, single-
nucleotide resolution and the possibility to profile a considerable number of samples in parallel. Despite the
excitement about miRNA biomarkers, challenges associated with insufficient characterization of the sequen-
cing library preparation efficacy, precision and method-related quantification bias have not been addressed
in detail and are generally underappreciated in the wider research community.

Here, we have tested in parallel four commercially available small RNA sequencing kits against a
cohort of samples comprised of human plasma, human serum, murine brain tissue and a reference
library containing ~ 950 synthetic miRNAs. We discuss the advantages and limits of these methodologies
for massive parallel microRNAs profiling. This work can serve as guideline for choosing an adequate
library preparation method, based on sensitivity, specificity and accuracy of miRNA quantification,
workflow convenience and potential for automation.
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Introduction

microRNA (miRNAs) are short endogenous non-coding
RNAs (ncRNA) with a central role in regulating post-tran-
scriptional gene expression by modulating messenger RNA
(mRNA) stability [1]. Interestingly, miRNAs have been
detected in various biofluids including plasma or serum, and
altered levels of circulating miRNAs were found to be indica-
tive of tissue pathology [2,3]. Therefore, not only tissue
miRNAs, but also extracellular miRNAs, have emerged as
promising biomarkers to diagnose or monitor disease pro-
gression. Consequently, a significant effort has been devoted
to studying cell-free microRNAs in various disease contexts as
novel biomarkers [4,5]. Of note, blood or urine based bio-
markers are especially desirable as these fluids are readily
accessible and can be sampled repeatedly with minimally
invasive procedures.

However, to comprehensively explore the biomarker
potential of circulating miRNAs, accurate and cost-efficient
miRNA profiling techniques are required. Next generation
sequencing (NGS) does not rely on a priori gene annotation
and thus allows for discovery of novel miRNA species [6].
Most importantly, NGS is sufficiently sensitive and cost-effec-
tive due to a high capacity for sample multiplexing. In addi-
tion, the single-nucleotide resolution provided by NGS

enables the identification of isomiRs (miRNAs variants that
differ in sequence or length from the annotated species in
miRBase) [7]. Several studies have compared various miRNA
profiling platforms such as microarrays, RT-qPCR or sequen-
cing [8,9], however without assessing the procedure of library
preparation itself, which has been shown to significantly
influence the results obtained by sequencing [10–15]. There
are significant challenges associated with small RNA sequen-
cing library preparation, such as biased adapter ligation, for-
mation of adapter dimers, the requirement to size-select the
small RNA species, and the necessity to adapt for very low
input protocols, especially if biofluids are analyzed. With
increasing numbers of tools becoming available to prepare
libraries for miRNA sequencing, there is an unmet need to
characterise and compare these different methodologies for
their efficacy and precision.

In order to generate small RNA sequencing (sRNA-seq)
libraries, adapters are ligated to both ends of the miRNA,
followed by reverse transcription, template amplification by
PCR and size selection of small RNA species. Importantly,
several of these steps have been shown to introduce biases and
artefacts [10,14,16,17]. As such, certain adapter-miRNA pairs
or sequence compositions may be favoured over others during
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ligation and PCR amplification, and thereby result in over- or
underrepresentation of these miRNAs in the sequencing
library [11,13]. Furthermore, the formation of adapter dimers
or inefficient size-selection may impede enrichment for
miRNAs over other RNA species and thus decrease the num-
ber of usable reads [11]. Lastly, a major challenge for the
discovery of biofluid-based miRNA biomarkers is the neces-
sity to work with very low input amounts of RNA.

In this study, we have benchmarked four commercial kits
intended for Illumina sequencing: Nextflex Small RNA-Seq
Kit v3, Bioo Scientific (BSC); SMARTer smRNA-Seq Kit,
Clontech/Takara (CLT); NEBNext Small RNA Library Prep
Set, New England Biolabs (NEB) and QIAseq miRNA Library
Kit, Qiagen (QIA). All methodologies can generate miRNA
sequencing libraries from low input amounts (1–100 ng) and
are therefore suitable to process RNA derived from biofluids.
Here, we prepared libraries from human plasma, human
serum and murine brain tissue as well as from the synthetic
RNA reference miRXplore (containing 950 miRNAs) for each
kit in parallel. Of note, we did not include the frequently used

TruSeq Small RNA Library Preparation Kit (Illumina), as the
manufacturer does not recommend its usage for low input
quantities. We aimed to critically evaluate the library prepara-
tion methodologies based on their i) sensitivity and accuracy
for miRNA quantification; ii) capacity to enrich for miRNA
mapping reads; and iii) convenience of workflow and poten-
tial for automation.

Results

Overview of the library preparation methodologies

The typical workflow for preparation of small RNA sequen-
cing (sRNA-seq) libraries is illustrated in Figure 1(a). Initially,
adapters are attached to the 21–23 nt long miRNA to allow for
PCR amplification and to accurately identify the native
miRNA termini during sequencing. Subsequently, cDNA is
generated, followed by PCR amplification, during which bar-
codes (to enable multiplexing) and sequencing index primers
are introduced. After library amplification, amplicons of the

Figure 1. Overview of the small RNA sequencing workflow, compared methodologies for library preparation and computational analysis pipeline.
(a) Schematic illustration of small RNA sequencing (sRNA-seq) library preparation. With exception of the SMARTer smRNA-Seq kit, all kits employed a ligation-based
approach to attach 3′ and 5′ adapter to the miRNA. In the QIAseq protocol, a unique barcode is attached at the RT stage (orange dotted line), so-called unique
molecular indices (UMI). Illumina adapter (purple and blue) and sequencing index (light purple) for multiplexing are added during the PCR amplification. Several
steps of the protocol may introduce bias to the sequencing libraries as indicated by the yellow warning triangles. (b) Table summary of the key features of the four
assessed sRNA-seq kits. (c) Small RNA sequencing data analysis pipeline. In the case of QIAseq, UMIs were trimmed alongside the adapters to allow side-by-side
comparison by a single computational pipeline. Abbreviations: Nextflex Small RNA-Seq Kit v3 (Nextflex), NEBNext Small RNA Library Prep Set (NEBNext) and QIAseq
miRNA Library Kit (QIAseq).
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correct size must be selected, for which typically either gel- or
bead-based purification methods are used (Figure 1(a)).

The library preparation methodologies compared in this study
have incorporated steps aimed to address quantification bias,
adapter dimer formation and inefficient size selection (Figure 1
(b)). Nextflex Small RNA-Seq Kit v3 (Nextflex), NEBNext Small
RNA Library Prep Set (NEBNext) and QIAseq miRNA Library
Kit (QIAseq) utilize RNA ligases to sequentially attach 3ʹ and 5ʹ
adapters to themiRNA. Of note, the Nextflex kit features so-called
degenerated adapters, where the last four nucleotides at the liga-
tion junction are randomized with the aim of minimising
sequence-dependent ligation bias [12,15]. Conversely, the
SMARTer smRNA-Seq kit utilizes a ligation-free ‘tailing
approach’, where initially the 3ʹ end is polyadenylated followed
by a reverse transcription (RT) reaction primed by an oligo dT
primer that incorporates the 3ʹ adapter. A specialized reverse
transcriptase enzyme (PrimeScript™ Reverse Transcriptase)
switches template upon reaching the end of each RNA template
and utilizes the provided SMARTer smRNA-Seq oligo as second-
ary template to attach the 5ʹ adapter (all Clontech/Takara). All
sequencing libraries were prepared strictly adhering to the man-
ufacturer’s instructions (details in Material and Methods section
and Table 1). Nextflex and QIAseq feature a gel-free size selection
step, whereas SMARTer smRNA-Seq and NEBNext require gel
separation. Following sequencing, raw reads were processed side-
by side utilising the outlined computational pipeline (Figure 1(c)).

Assessment of miRNA quantification bias during library
preparation

The miRXplore universal reference contains more than 950
synthetic miRNAs at equimolar ratio [18] and is therefore sui-
table to assess distortions of miRNA counts that are introduced
during library preparation. Of note, previous studies have care-
fully validated the universal reference utilizing spike-in strategies
[19], and miRXplore has been widely used in both microarray
and RNAseq studies [13,20–22]. Here we aimed to compare the
capability of each kit to capture miRNA abundance independent
of sequencing performance or depth. Consequently, equal num-
bers of mapped reads (sampled by using 570,000 mapped reads
in random order) were aligned and counted for each kit (count
statistics are summarized in Supplementary Table S1). To enable
parallel analysis of the four kits utilizing the same analysis pipe-
line, we did not apply the UMI normalization offered byQIAseq.

Of the 539 human miRNAs in the reference, on average,
470 distinct miRNA species were detected (mean count of the
replicates > 10 reads). The number of miRNA species

identified by the kits was comparable although SMARTer
smRNA-Seq kit detected the most miRNAs (501), followed
by QIAseq (487), Nextflex (466) and NEBNext (424) (Figure 2
(a)). The number of identified miRNAs is an indicator for
sensitivity and the capacity of the library preparation metho-
dology to reflect the true diversity of the input material.

Due to the equimolar abundance of each synthetic miRNA
in the reference, all detected miRNAs are expected to be
sequenced with equal counts. The relative variability in data
sets, calculated as the ratio of standard deviation to the mean,
and known as the coefficient of variation (CV), was similar in
Nextflex, SMARTER smRNA-Seq, QIAseq (~ 1.4), indicating
a comparable performance. In contrast NEBNext libraries
showed a higher CV (~ 2.7) (Figure 2(a)). Likewise, plotting
the cumulative frequency of miRNA counts against ranked
miRNAs, revealed that a larger number of miRNA species was
detected with similar counts (as indicated by a flatter slope of
the curve) by Nextflex, SMARTER smRNA-Seq and QIAseq
than with the NEBNext kit (Figure 2(b)).

Library complexity can also be assessed by the number
of miRNAs accounting for the top 90% of the total read
counts. The complexity of SMARTER smRNA-Seq library
was highest as 252 miRNAs comprised the upper 90% of
read counts, followed by QIAseq (237), Nextflex (209) and
NEBNext (103). Additionally, we also generated histograms
to capture the number of miRNAs within x-fold of the
mean (Figure 2(c,d)). The abundance of 45–49% of detected
miRNAs were within 2-fold of the mean in libraries pre-
pared with Nextflex, SMARTER smRNA-Seq or QIAseq,
whilst NEBNext detected only 20% within 2-fold (Figure 2
(d)). Overall, SMARTER smRNA-Seq and QIAseq provided
the most accurate and sensitive miRNA quantification in
the synthetic reference sample.

Interestingly, the top 10% of total miRNA reads was
accounted for by only 2–6 miRNAs for all kits. To determine
possible common molecular features of the overrepresented
miRNAs, we used the DREME tool from the MEME suite to
discover short sequence motifs [23]. However, no significantly
enriched motifs were found for any of the methodologies (P-
value adjusted > 0.05 (data not shown)), therefore providing no
evidence for specific sequence motifs or nucleotide composition
to cause the overrepresentation of some synthetic miRNAs.

Furthermore, we systematically correlated the mean read
count for each library preparation methodology with mean
read counts of the other kits using Pearson correlation
analysis to detect similarities between the methodologies
(Table 2). Although significant p-values were determined

Table 1. Adapter dilutions and number of PCR cycles for sRNA-seq library preparation.

BSC CLT NEB QIA

ID Sample Input (ng) AD PCR AD PCR AD PCR AD PCR

U1 miRXplore 1 5 1/1.3 16 N/A 13 none 15 none 15
U2 miRXplore 2 5 1/1.3 16 13 none 15 none 15
P1 hsa plasma 1 5 1/4 23 16 1/4 18 1/5 22
P2 hsa plasma 2 5 1/4 23 16 1/4 18 1/5 22
S1 hsa serum 1 5 1/4 23 16 1/4 18 1/5 22
S2 hsa serum 2 5 1/4 23 16 1/4 18 1/5 22
B1 mmu brain 1 200 1/1.3 16 13 none 15 none 15
B2 mmu brain 2 200 1/1.3 16 13 none 15 none 15

Abbreviations: miRXplore Universal Reference (U), human plasma (P), human serum (S), mouse brain (B), adapter dilution (AD).
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for all comparisons, the correlation coefficient r indicated
only weak or modest correlation (ranging from 0.228–
0.554), suggesting that a large amount of the observed
count data could not be explained by the correlation ana-
lysis. Interestingly, the highest correlation coefficient was
determined for Nextflex and QIAseq (0.554) which utilize
adapters of similar sequences. However, we could not
detect any sequence motifs in miRNAs commonly over-
represented in these two methodologies using DREME.

Lastly, we randomly selected three miRNAs present in
the miRXplore reference to validate their abundance using
RT-qPCR as an orthologue method (Supplementary
Figure S1). We detected all of three miRNAs with less
than 1.5 fold change to the mean, whereas in some sequen-
cing libraries, these miRNAs were detected to divert from
the mean expression by up to 5 fold. These results confirm
that although these miRNAs were found to be similarly
abundant in RT-qPCR, each library preparation methodol-
ogy distorted miRNA abundance in a unique pattern.

Small non-coding RNA biotype distribution in serum and
plasma

Next, we carried out library preparation on plasma and serum
samples derived from healthy volunteers (n = 2) using all four
protocols. Notably, both plasma and serum are a rich source
of different classes of small ncRNAs (full-length RNA and
fragmented variants) [24]. Consequently, to maintain sequen-
cing depth while multiplexing large numbers of samples, a
library preparation methodology should enrich miRNAs over
other small ncRNAs and mRNA degradation products.

We sorted the mapped reads into the following biotypes of
small ncRNAs: miRNA, transfer RNAs (tRNA), ribosomal
RNAs (rRNA), piwi-interacting RNAs (piRNA), mitochon-
drial transfer and ribosomal RNAs (mt-t/rRNA), other small
RNAs (sRNA) (including small nucleolar RNAs (snoRNA),
small nuclear RNAs (snRNA), small cajal body-specific RNAs
(scaRNA) and small cytoplasmic RNAs (scRNA)), miscella-
neous small RNAs (miscRNA) (including vault RNA (vt-
RNA) and Y RNAs (YRNA)) and ‘not aligned’, referring to
mapped reads that did not align to small ncRNA genes in the
human genome (Figure 3; Supplementary Table S2 and S3).
The percentages of mapped reads corresponding to miRNAs
were as follows: QIAseq (~ 58% in plasma, 35% in serum),
Nextflex (~ 41% in plasma, ~ 33% in serum), NEBNext (11%
in plasma, 10% in serum) and SMARTer smRNA-Seq (3% in
plasma, 1% in serum). These data suggests that QIAseq and
Nextflex provide higher miRNA enrichment relative to the
two other tested kits. Of note, the percentage of miRNA

Figure 2. Diversity and dynamic range of sRNA-seq libraries utilising a synthetic miRNA reference.
Parallel testing of the sRNA-seq library preparation methodologies against the miRXplore universal reference (Miltenyi Biotec) library containing 539 synthetic
miRNAs of human origin (n = 2 technical replicates). (a) Table summarising sensitivity and library complexity. The number of detected microRNAs with > 10 reads
(using mean counts of the replicates) and the coefficient of variation (CV) were determined. (b) Cumulative frequency plot of the mean miRNA counts of the
replicates for each methodology. The number of miRNAs that comprise the top 10%, the top 90% (where top means most abundant), and the bottom 10% of all
miRNA reads (least abundant) for each methodology are listed in the table (a). The grey shaded area corresponds to miRNAs accounting for the top 90% of reads. (c)
Histogram showing the log2 transformed ratio of individual miRNA count versus the mean count of all miRNAs. (d) Bar chart depicting the percentage of miRNAs
within x-fold of the mean.

Table 2. Correlation analysis of miRNA abundance in the miRXplore universal
reference.

r BSC CLT NEB QIA

BSC 1.000 0.387 0.359 0.554
CLT 0.387 1.000 0.228 0.459
NEB 0.359 0.228 1.000 0.402
QIA 0.554 0.459 0.402 1.000

Pearson correlation coefficient (r) as indicated. All p-values < 0.01.
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mapping reads was consistently higher in plasma compared to
serum for all methodologies.

A considerable number of reads (65% for plasma, 84%
for serum) from the libraries prepared with SMARTER
smRNA-Seq were discarded since they did not align to
any small RNA in the annotated reference file (Figure 3;
Supplementary Table S1 and S2). Given the fact these
reads were successfully mapped to the genome, they are
likely to correspond to other RNA species. One potential
reason for reduced selectivity of the SMARTer smRNA-
Seq kit is that it does not exclude mRNA degradation
products whereas library preparations with all other kits
require an intact 5ʹ phosphate and 3ʹ hydroxyl groups for

adapter ligation [25]. Accordingly, the TapeStation profile
of SMARTer smRNA-Seq revealed a broad spectrum of
RNA molecules of a larger size than miRNAs prior to
size-selection. In contrast, the profile of NEBNext before
size-selection was already enriched in miRNA species
(Supplementary Figure S2). Overall, libraries prepared
from plasma were more enriched for miRNAs compared
to matching serum libraries and overall, QIAseq and
Nextflex were most efficient in sequencing miRNAs in
both biofluids.

Besides miRNAs, tRNA derived fragments (tRFs) were
frequently detected in serum (16% of mapped reads, aver-
aged across all libraries) but less abundant in plasma (2%).

Figure 3. Small RNA library composition by biotype for human plasma and serum samples.
Pie charts analysis of the mean percentages of mapped sRNA reads from (a) human plasma and (b) human serum. Mapped reads were sorted into the following
ncRNA biotype classes: miRNA, tRNA, rRNA, piRNA, mt-t/rRNA, other sRNA (snoRNA, snRNA, scaRNA and scRNA) and miscRNA (vt-RNA and YRNA). Mapped reads that
did not align to ncRNA genes in the human genome were classified as ‘not aligned’. Lowly abundant sRNAs biotypes were combined in the charts as ‘Others’. n = 2
biological replicates for plasma and serum respectively, pie charts show mean percentage.
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In contrast, the amount of YRNA derived fragments
(grouped under miscRNA) mapping reads was typically
higher in plasma (17%) compared to serum (10%)
(Figure 3). Interestingly, 87–99% of miscRNAs in human
plasma corresponded to human YRNA species consistently
across all kits (data not shown). QIAseq employs a che-
mical blocking strategy to prevent this RNA species from
incorporation into the sequencing library which may be

responsible for the observed reduction in reads mapping
to miscRNA in the QIAseq libraries (less than 4% in all
samples).

miRNA signatures in serum and plasma

We next sought to investigate the miRNA composition of the
plasma and serum libraries. Normalized counts were ranked

Figure 4. miRNA signatures in human plasma and serum samples.
Overview of the miRNAs with the highest count numbers in each library for (a) human plasma and (b) human serum. The table indicates the percentage of
sequencing reads accounting for the top 10 or top 20 most abundant miRNAs respectively (mean normalized frequencies used). Bar charts indicate the
mean percentage of reads associated with the 20 most abundant miRNAs separated by biofluid and kit. Typically 10 miRNAs were accounting for more
than 55% of all miRNA mapping reads. Most libraries were enriched for miRNAs that are typically found in blood-derived samples, such as miR-486. n = 2,
values are mean + SD.
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by ascending abundance and the cumulative frequency (using
the mean count of the replicates) was calculated. Previous
studies have reported an asymmetric distribution of miRNAs
in biofluids and tissues (resembling a Pareto distribution),
wherein a small number of miRNAs accounts for the majority
of total reads [24,26,27]. In line with these findings, the ten
most frequently detected miRNAs accounted for 64% of all
miRNA mapping reads in plasma and 70% in serum samples
(averaged across all kits) (Figure 4(a,b)). For libraries pre-
pared with QIAseq, this percentage was lower than the aver-
age (55.0% in plasma and 63.8% in serum), indicating a
slightly less skewed distribution of miRNA counts.

In order to determine whether the observed biofluid
miRNA signature was in concordance with previously
published studies, the normalized read frequency of the
20 most abundant miRNAs was plotted for each metho-
dology in descending abundancy (Figure 4(a,b)).
Interestingly, 8 of the 20 most abundant miRNAs in
plasma, and 6 of the 20 most frequently detected
miRNAs in serum, were common across all methodologies
(Supplementary Figure S4(a,b)). This considerable degree
of overlap highlights that despite different library prepara-
tion methodologies, clear similarities in miRNA signatures
could be detected. Most of the commonly detected
miRNAs have been described previously to be highly
abundant in blood-derived samples e.g. miR-486, miR-
92a, miR-423 and members of the miR-let-7 family
[24,26,28]. In summary, all assessed kits were enriched in
miRNAs typically in blood and several of those miRNAs
were commonly detected by multiple methodologies.

Small non-coding RNA biotype distribution and miRNA
signatures in murine brain

To assess the capacity of each library preparation methodol-
ogy for miRNome profiling of tissue samples, we prepared
libraries from murine brain tissue. In contrast to plasma and
serum, libraries generated from murine brain tissue, with
exception of the SMARTer smRNA-Seq kit, contained mainly
miRNA-mapping reads (Figure 5(a)). The percentage of
mapped miRNA reads was as follows: 85% for QIAseq, 84%
for NEBNext, 64% Nextflex and 17% for and SMARTer
smRNA-Seq (Figure 5(a), Supplementary Table S4). Some
libraries contained considerable amounts of other small
RNA species, such as snoRNAs (~ 30% in NEXTflex samples
and 7% in QIAseq samples). Similar to the plasma and serum,
a substantial proportion of the reads for the SMARTer
smRNA-Seq did not align to ncRNA genes and 40% of the
reads were thus discarded (Figure 5(a), Supplementary
Table S4).

Overall, the miRNA distribution in the tissue libraries
was uneven and the top 10 most abundant miRNAs
accounted for 65% of all miRNA-mapping reads (utilising
mean normalized read frequency) (Figure 5(b.c)). Libraries
prepared with Nextflex, NEBNext and QIAseq were highly
enriched in miR-9, a miRNA abundant in brain with an
established role in neurogenesis [29,30], (Figure 5(c)).
While miR-9 was also abundant in SMARTer smRNA-
Seq libraries (rank 11), members of the let-7 family were

detected with higher frequency. Notably, published
miRNA sequencing data confirm miR-9, several members
of the let-7 family, as well as miR-125 and miR-30 as
being highly abundant in murine brain tissue, [31]. This
consistency with previous studies indicates that all meth-
odologies generated miRNA signatures typical for brain
tissue, albeit the overlap across the four kits was slightly
less compared to the biofluids (Supplementary Figure S4
(c)). In general, small RNA libraries generated from tissue
samples are more enriched in miRNAs compared to blood,
and in particular, the QIAseq and Nextflex libraries were
comprised of more than 80% miRNA mapping reads.

Sequencing efficiency of libraries prepared from biofluids
and brain tissue

During analysis of RNA sequencing experiments, the filtering
of reads mainly occurs during removal of adapters (reads
without adapter or too short reads) and mapping (unmapped
or multi-mapped reads; in our study reads mapping to the
reference genome more than 20 times were discarded). The
number of reads passing these filters indicates the proportion
of reads which are usable for downstream analysis and as
such, gives an indication on sequencing efficacy. We calcu-
lated the percentage of reads passing these two initial filtering
steps for the four library preparation methodologies for
human blood (averaged across plasma and serum libraries)
and murine brain tissue (Figure 6(a)). The number of usable
reads was typically higher in tissue libraries compared to
blood, with exception of the SMARTER smRNA-Seq kit.
This finding is likely a consequence of an increased abun-
dance of fragmented RNA species in the circulation, which
may interfere with the enrichment for miRNAs. In addition,
we investigated the presence of adapter dimers both visually
and by bioinformatics analysis (Supplementary Figure S3). No
adapter dimers were observed by visual inspection of the
library size profiles, with exception of the NEBNext libraries,
in which a small number of adapter dimers was detected by
visual and computational analysis (corresponding to 0.27% of
total reads).

In the case of miRNA biomarker discovery, the percen-
tage of reads mapping to miRNAs is of highest relevance
and we therefore focused the statistical analysis on this
proportion of reads. After combining the data for plasma
and serum, the proportion of raw reads corresponding to
miRNAs was as follows: 28% for Nextflex, 22% for QIAseq,
7% for NEBNext and 1% SMARTer smRNA-Seq (Figure 6
(a)). The performance of the kits and their comparison is
different based on whether these are applied to peripheral
biofluids or tissue. Consequently, if human blood is pro-
filed, Nextflex and QIAseq provide a significant higher
enrichment for miRNA mapping reads relative to the two
other tested kits. In the case of murine tissue, QIAseq and
NEBNext performed best, with 69% and 65% of the total
reads aligning to miRNAs, respectively. For QIAseq, this
was a significant increase in miRNA enrichment compared
to Nextflex (53%) and SMARTer smRNA-Seq (6%)
(Figure 6(a)).
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In conclusion, Nextflex and QIAseq allow for efficient
miRNome profiling in both blood and brain tissue, while
NEBNext delivered an equivalent performance in brain tissue
but not in biofluid samples. Libraries generated by the SMARTer
smRNA-Seq displayed less enrichment of miRNA mapping
reads, suggesting that a considerably higher sequencing depth
would be required to achieve comparable miRNome coverage.

Discussion

In this study we have undertaken a comprehensive compar-
ison of four commercially available small RNA sequencing
methodologies applicable to low-input material (Figure 1). In
recent years, evidence has emerged that during adapter liga-
tion, some adapter pairs or sequence compositions may be

Figure 5. Small RNA library compositions by biotype and miRNA signatures of murine brain samples.
Pie chart analysis of the mean percentages of small RNA reads from murine brain tissues. Mapped reads were sorted into the following ncRNA biotype classes:
miRNA, tRNA, rRNA, piRNA, mt-t/rRNA, other sRNA (snoRNA, snRNA, scaRNA and scRNA) and miscRNA (vt-RNA and YRNA). Mapped reads that did not align to ncRNA
genes in the human genome were classified as ‘not aligned’. Lowly abundant sRNAs biotypes were combined in the charts as ‘Others’. Pie charts depict mean
percentage of each sRNA biotype relative to mapped reads. (b) The table indicates the percentage of sequencing reads accounted for by the top 10 or top 20 most
abundant miRNAs (mean normalized frequencies used). (c) Bar charts indicate the mean percentage of reads associated with the 20 most abundant miRNAs in each
library. n = 2 biological replicates, values are mean + SD.
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favoured over others. The consequence is a distortion of
miRNA quantity from the true abundance in the sample,
thus resulting in over- or underrepresentation of certain
miRNAs in the sequenced libraries [10,14]. A study using
identical starting material but different methodologies to gen-
erate libraries for sequencing, demonstrated that miRNA
expression may vary up to four orders of magnitudes between
datasets [14]. The observed bias was largely independent of
sequencing platforms, but strongly correlated to the metho-
dology employed to prepare the small RNA libraries [14,16].
Importantly, variation in the choice of RNA ligase, substrates
(miRNA and adapter sequence as well as secondary structure
and RNA-adapter co-folding) and reagents are all likely to
account for some of the observed biases (reviewed in detail in
[11]). Several studies suggest that the introduction of 3–5
randomized nucleotides to the ligation boundaries, as incor-
porated into the Nextflex adapters, alleviates adapter ligation
bias and increases library diversity [12,32]. Similarly,
approaches bypassing a ligation step by using 3′-end tailing
by polyadenylation (as employed by the SMARTer smRNA-
Seq kit) have been developed, although polyadenylation may
also be subjected to bias, for example due to primary and
secondary structure of the RNA substrate [11].

Here, we initially focused on assessing systematic bias
introduced by the library preparation protocol using the
universal reference miRXplore. Although miRNAs are repre-
sented in this reference at an equimolar ratio, only between
20–45% of detected human miRNAs were quantified within
2-fold of the miRNA population mean (Figure 2). SMARTer
smRNA-Seq, Nextflex and QIAseq exhibited very similar
CVs, cumulative frequency plots, as well as an almost iden-
tical number of miRNAs detected within 2-fold of the mean
(Figure 2). Accordingly, utilising either a ligation-free

technology or adapters with degenerated ends (random
nucleotides) did not confer a significant improvement in
accuracy of miRNA quantification, at least if benchmarked
to QIAseq (direct ligation of adapters to miRNAs).
However, these three methodologies demonstrated a super-
ior performance compared to the NEBNext kit, which like-
wise relies on direct ligation of the adapter to the miRNA.
Given the observed results with QIAseq, it appears that
careful optimization of ligation enzyme, adapter sequence
and reaction conditions may alleviate bias to similar extent
as degenerated adapters or 3ʹ-end tailing. Overall, with a
maximum of 49% of detected miRNAs quantified within 2-
fold of the mean, our results suggest that despite advances, a
significant distortion remains for many of the detected
miRNAs in the synthetic reference (Figure 6(b)). Given
that no enriched sequence motifs were found in the over-
represented synthetic miRNAs for any of the kits, we were
unable to draw conclusions on potential molecular features
causative of skewed miRNA quantification.

Of note, besides adapter ligation, clonal amplification of the
input material during PCR represents another potential source of
bias. To this end, theQIAseq kit features uniquemolecular indices
(UMIs), which are introduced at the RT stage to address this
source of bias. Whereas this technology may be especially useful
if many PCR cycles are required to generate enough material for
sequencing, it only accounts for bias that occurs after adapters
have already been ligated. To this end, multiple studies suggest
that the bias conferred by clonal amplification during PCR is
negligible compared to bias created during adapter ligation
[12,13,25]. Qiagen provides the GeneGlobe data analysis tool
that is capable of UMI deconvolution and sRNA mapping, but
we chose not to exploit this tool as the aim of our study was to
undertake a parallel comparison utilising the same computational

Figure 6. Summary of sequencing efficiency and overall performance.
(a) To assess sequencing efficiency, the percent of reads passing the filter during adapter trimming and mapping were calculated for each of the four library
preparation methodologies. The bar graph indicated the average percentage relative to total reads (corresponds to 100%) for biofluids (combing plasma and serum)
and brain libraries. Values are mean + SEM, n = 4 for biofluids, n = 2 for brain. *P < 0.05, **P < 0.01, ***P < 0.001, significance only shown for miRNA mapping reads,
one-way ANOVA with Bonferroni post hoc test. Values are mean + SD(b) Summary of the comparison for the sRNA-seq library preparation protocols. Green ticks
indicate a satisfying and, yellow ticks an average performance in the respective category. Red crosses either signify a performance below average or in the case of
YRNA inhibition, the option is not available.
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pipeline for all kits. This is of particular importance in the case of
miRNA sequencing, where reads are short and often map to
multiple locations in the genome. In this case, the choice of
mapping and counting tool, supplied parameters and annotation
files inevitably impacts the results. In addition, GeneGlobe
employs a sequential mapping strategy, during which reads are
first mapped to mature miRNAs annotated in miRBase version
2.1, then unmapped reads are further sequentially mapped to
miRNA hairpins, piRNAs, tRNAs, rRNAs, mRNAs and other
RNAs. Consequently, a direct comparison of QIAseq libraries
analyzed with GeneGlobe and other library kits analyzed by an
alternative computational pipeline is difficult. As a result, it is
beyond the scope of this study to comment on utility of UMIs and
the GeneGlobe analysis platform.

Further challenges of the adapter ligation step are intramole-
cular circularization reactions or the formation of adapter dimers
as side products. The latter may result in contamination of the
miRNA sequencing libraries, thus decreasing the sequencing
depth by reducing the number of usable reads (Raabe et al.
2014). The methodologies tested in this study use chemically
pre- adenylated 3ʹ adapters to prevent adapter circularization
and employ various methodologies to avoid formation of adapter
dimers (Figure 1(b)). In our comparison study, very few adapter
dimers were observed in the NEBNext, an even smaller amount in
the QIAseq kit and negligible quantities in the other two kits,
highlighting that overall all methodologies sufficiently inhibited
adapter dimer formation (Supplementary Figure S3 and
Figure 6(b)).

Another important criterion to select a library prepara-
tion protocol for miRNA profiling is the percentage of
reads that pass filtering steps and subsequently map to
miRNAs, especially if many samples are sequenced in par-
allel and sequencing depth is critical. In this study, we
found that in the case of plasma and serum, libraries pre-
pared with QIAseq or Nextflex were most enriched for
miRNA reads, whereas in brain tissue, QIAseq and
NEBNext performed best (Figures 3, 5 and 6(a,b)).
Although we only tested murine brain tissue, we hypothe-
sise that other tissues of murine or of species with related
origin will generate similar results with respect to sequen-
cing efficiency and small RNA biotype composition.
Nevertheless, our study has the limitation of having ana-
lyzed only selected sample types that we considered to be
very commonly used in miRNA biomarker and discovery
studies.

Of note, we found that miRNA mapping reads were more
enriched in plasma compared to serum across all kits, suggest-
ing plasma may be the more resourceful biofluid for circulating
miRNA profiling. Furthermore, we consistently detected a con-
siderable amount of tRFs in the serum samples, whereas in the
plasma libraries YRNA fragments were much more frequently
detected. Possible explanations for this asymmetry could either
be that tRFs are preferentially released by blood cells during the
coagulation process or alternatively, that tRFs are destabilised
by clotting activators such as EDTA [33].

Finally, if sRNA-seq is used as a profiling method for
large numbers of samples, a fast and automated protocol
desirable. To this end, SMARTER smRNA-Seq features the
quickest workflow up until the gel-based size-selection step

which requires more time and labour even if the Pippin
system is used. Importantly, both Nextflex and QIAseq
offer the possibility to complete the entire workflow on
one robotic platform since size selection is carried out in
tubes utilising magnetic bead separation. We found hand-
ling of the Nextflex kit slightly more convenient as the
complete library preparations can be performed in 96-well
format. Conversely, QIAseq requires a larger volume for
bead separation and therefore necessitates a switch to
1.5 ml tubes, thus reducing the number of samples pro-
cessed in parallel (Figure 6(b)). In contrast, the Nextflex
workflow includes one additional step of bead separating
compared to QIAseq, thereby increasing samples processing
time.

In summary, all protocols assessed in this study success-
fully generated libraries from low amounts of RNA derived
from complex biofluids, although the number of miRNAs
mapping reads varied considerably across RNA sources and
library preparation methodologies. Consequently, depend-
ing on source of input material and the aim of the study
(sometimes inclusion of other small RNA fragments, such
as tRFs might be desired), the library preparation metho-
dology of choice may differ. Nevertheless, we found that
Nextflex and QIAseq consistently performed well with
respect to enrichment of miRNA mapping reads in bio-
fluids and tissues. Furthermore, both kits exhibited a rela-
tively low quantification bias and have the capacity to be
automated for high-throughput miRNA library preparation.
Overall, our study highlights that despite various improve-
ments in library preparation methodologies, miRNA quan-
tification bias remains. Given that most miRNA biomarker
studies focus on the discovery of differentially expressed
miRNAs, it is important to highlight that quantification
bias per se does not compromise the ability to detect
expression changes if control and disease samples are pro-
cessed in parallel. However, severe quantification bias
reduces the number of reads available to lowly abundant
miRNAs, thus consequently impacting the capacity to reli-
ably detect changes in their abundance. In this case, deeper
sequencing or selecting a kit with less skewed miRNA
quantification may be advisable.

In conclusion, small RNA sequencing remains challenging
despite considerable improvements. Sequencing bias intro-
duced during pre-analytical and analytical steps requires
further improvement especially if NGS is to be used as a
method of absolute quantification. Besides improving experi-
mental methods for miRNA profiling, computational predic-
tion tools could facilitate the discovery of miRNA disease
biomarkers. In recent years, more databases collecting
miRNA-disease association have become available, alongside
with a variety of algorithms capable of predicting miRNA
biomarkers (reviewed in detail in [34]). The computational
prediction tools are typically based on either network algo-
rithms [35] or machine learning [36,37], and particularly the
latter approach has shown promise in discovering previously
unknown miRNA-disease associations. Combining in silico
prediction models and accurate experimental miRNA quanti-
fication tools, could further enhance future miRNA biomarker
discovery.
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Material and methods

RNA extraction and library preparation

Blood was obtained from healthy volunteers (n = 2) and
processed to generate plasma (P) and serum (S) according
to standard operating protocols as reported previously [38].
Approvals were obtained from the East London and the City
Research Ethics Committee 1 (09/H0703/27). All participants
provided written consent. RNA was extracted from 600 µl of
plasma or serum using the miRNeasy Serum/Plasma kit
(Qiagen) according to the manufacturer’s protocol. Murine
brain tissue (B) was obtained from E13.5 mouse embryos
(n = 2) and RNA was extracted utilising the miRNeasy
micro kit (Qiagen). The purified RNA was quantified with
Qubit RNA HS assay kit (Thermo Fisher Scientific). The
miRXplore Universal Reference (U) containing ~ 950 syn-
thetic miRNAs at equimolar ratio, was utilized as positive
control (n = 2, technical replicates) (Miltenyi Biotech). All
input quantities for small RNA library preparation are indi-
cated in Table 1.

Sequencing libraries were prepared, strictly adhering to the
manufacturer’s instructions. Adapter dilution and cycle num-
bers were set according to the user manual and are listed in
Table 1. The size profile of the individual libraries were
analyzed utilising D1000 DNA High Sensitivity Screen Tape
on a 4200 TapeStation System (both Agilent). Libraries were
quantified on a Qubit with the DNA High Sensitivity kit (Life
Technologies).

Quantified libraries were mixed at equimolar ratio for each
kit and sequenced as follows: Nextflex and NEBNext with a
1 × 51 setup using the NextSeq 500 75-cycle high output
sequencing kit and the NextSeq 550 sequencer; SMARTer
smRNA-Seq with 1 × 51 setup using the HiSeq rapid SBS
kit v4 and HiSeq 2500 sequencer; QIAseq with a 1 × 76 setup
utilising MiSeq reagent kit v2 and MiSeq sequencer (all
Illumina). Due to differing sequencing requirements
(SMARTer smRNA-Seq libraries are not advised to be
sequenced on NextSeq, QIAseq require different read length)
and incompatible indexes (QIAseq and Nextflex indexes were
incompatible) it was not possible to sequence all kits in
parallel on the same platform.

Sequencing data analysis

Raw fastq files have been deposited in the NCBI Sequence
Read Archive – accession number SUB3543145. The compu-
tational analysis pipeline is outlined in Figure 1(c). In brief,
raw reads were quality checked with the FASTQC package
(version 0.11.2). Adapters were removed as required for each
kit using the cutadapt software (version 1.14) and tolerating
10% error. Reads without adapters or shorter than 17 bases
were removed. Of note, the unique molecular indices (UMI)
sequences in the QIAseq libraries were trimmed off together
with the adapters, so that all kits could be analyzed in parallel
utilising the same computational pipeline.

Next, human (Homo sapiens, Hg38 assembly) and mouse
(Mus musculus, mm10 assembly) reference genomes were
downloaded from UCSC (http://hgdownload.cse.ucsc.edu/

downloads.html) and indexed utilising bowtie-build function
(version bowtie-1.1.2). The following options were applied for
mapping the processed reads from serum, plasma and murine
brain to the reference genome: -v1 (allowing one mismatch)
-m20 (allowing up to 20 multi mapping events) – best –
strata (only return one alignment with the best alignment
score). To map the miRXplore universal reference, no mis-
matches were allowed (-v0) and for convenience, only
miRNAs mapping to the human genome were considered.
Alignments were stored as sorted BAM files utilising samtools
(versions 1.3.1). In case of the universal reference, reads were
split in random order into two new fastq files, containing
either mapped and unmapped reads using the ‘–all’ and ‘–
un’ command. Subsequently, equal numbers of mapped reads
were used for downstream analysis.

Sorted alignment files were counted with HTseq (version
0.6.1, intersection-nonempty mode) utilising a customized
reference file with the annotations coordinates for ncRNA
species of interest for human and mouse respectively.
Annotation reference files were generated by extracting the
coordinates of human and mouse miRNAs, rRNAs, snRNA,
snoRNA, scaRNA, sRNA, miscRNA, vaultRNA, YRNA, Mt-
rRNA and Mt- tRNA from the respective annotation file on
the Ensembl website (Homo_sapiens.GRCh38.89.chr.gtf.gz
and Mus_musculus.GRCm38.89.chr.gtf.gz) using the grep
command. Next, the genome coordinates for human and
mouse tRNAs were extracted from the UCSC table browser
(https://genome.ucsc.edu/cgi-bin/hgTables). Human and
murine piRNA annotations were obtained from the
piRNABank (tp://pirnabank.ibab.ac.in/request.html) [13],
and converted to the GRCm38.89 coordinate system using
the Ensemble Assembly Converter tool. Finally, all indivi-
dual non-coding RNA annotation files were combined for
each species utilizing the cat command. The DESeq2 R
package (version 1.16.1) was used to normalize for library
size [39]. Of note, reads of related miRNAs which are
encoded in distinct genetic loci but correspond to the iden-
tical mature miRNA sequence (e.g. miR-486–1 and miR-
486–2) were combined for the miRNA signature analysis as
their genetic origin typically cannot be inferred during
sequencing.

The DREME tool from the MEME suite was used to
identify enriched sequence motifs of overrepresented
miRNAs in the universal reference [23]. Both the 20 most
abundant miRNAs and the subset of these accounting for the
top 10% of reads were tested against background control
sequences consisting of all mature human miRNA sequences
present in the universal reference.

Statistical analysis was carried out with GraphPad Prism.
Percentage values were transformed utilising the arcsine func-
tion and compared by one-way ANOVA with Bonferroni post
hoc test.

miRNA RT-qPCR

10ng of the miRXplore universal reference was reversed tran-
scribed using the MicroRNA Reverse Transcription Kit (Life
Technologies) and miRNA specific hairpin RT primer accord-
ing to the manufacturer’s instructions (assay IDs: hsa-miR-28-
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3p (002446), hsa-miR-181a-5p (000480) hsa-miR-199a-5p
(000498)). Subsequently, miRNAs were amplified using
Small RNA TaqMan assays and TaqMan Universal PCR
Master Mix as per manufacturer’s instructions (all Life
Technologies). Relative quantities were obtained utilising
standard curves.
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