27 research outputs found

    A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development

    Get PDF
    Microscopic examination of Giemsa-stained thin blood smears remains the gold standard method used to quantify and stage malaria parasites. However, this technique is tedious, and requires trained microscopists. We have developed a fast and simple flow cytometry method to quantify and stage, various malaria parasites in red blood cells in whole blood or in vitro cultured Plasmodium falciparum. The parasites were stained with dihydroethidium and Hoechst 33342 or SYBR Green I and leukocytes were identified with an antibody against CD45. Depending on the DNA stains used, samples were analyzed using different models of flow cytometers. This protocol, which does not require any washing steps, allows infected red blood cells to be distinguished from leukocytes, as well as allowing non-infected reticulocytes and normocytes to be identified. It also allows assessing the proportion of parasites at different developmental stages. Lastly, we demonstrate how this technique can be applied to antimalarial drug testing

    CD4+ Natural Regulatory T Cells Prevent Experimental Cerebral Malaria via CTLA-4 When Expanded In Vivo

    Get PDF
    Studies in malaria patients indicate that higher frequencies of peripheral blood CD4+ Foxp3+ CD25+ regulatory T (Treg) cells correlate with increased blood parasitemia. This observation implies that Treg cells impair pathogen clearance and thus may be detrimental to the host during infection. In C57BL/6 mice infected with Plasmodium berghei ANKA, depletion of Foxp3+ cells did not improve parasite control or disease outcome. In contrast, elevating frequencies of natural Treg cells in vivo using IL-2/anti-IL-2 complexes resulted in complete protection against severe disease. This protection was entirely dependent upon Foxp3+ cells and resulted in lower parasite biomass, impaired antigen-specific CD4+ T and CD8+ T cell responses that would normally promote parasite tissue sequestration in this model, and reduced recruitment of conventional T cells to the brain. Furthermore, Foxp3+ cell-mediated protection was dependent upon CTLA-4 but not IL-10. These data show that T cell-mediated parasite tissue sequestration can be reduced by regulatory T cells in a mouse model of malaria, thereby limiting malaria-induced immune pathology

    IL-33-mediated protection against experimental cerebral malaria is linked to induction of Type 2 innate lymphoid cells, M2 macrophages and regulatory T cells

    Get PDF
    Author Summary Cerebral malaria (CM) caused by the parasite Plasmodium sp . is a fatal disease, especially in children. Currently there is no effective treatment. We report here our investigation on the role of a recently discovered cytokine IL-33, in treating experimental cerebral malaria (ECM) in the susceptible C57BL/6 mice. IL-33 protects the mice against ECM. The protection is accompanied by a reduction of Th1 response and the enhancement of type 2 cytokine response. We also found that IL-33 mediates its protective effect by inducing a population of type 2 innate lymphoid cells (ILC2), which then polarize macrophages to alternatively-activated phenotypes (M2). M2 in turn expand regulatory T cells (Tregs) which suppress the deleterious Th1 response. Our report therefore reveals hitherto unrecognised mechanisms of the regulation of ECM and provide a novel function of IL-33

    Natural Regulatory T Cells in Malaria: Host or Parasite Allies?

    Get PDF
    Plasmodium falciparum malaria causes 500 million clinical cases with approximately one million deaths each year. After many years of exposure, individuals living in endemic areas develop a form of clinical immunity to disease known as premunition, which is characterised by low parasite burdens rather than sterilising immunity. The reason why malaria parasites persist under a state of premunition is unknown but it has been suggested that suppression of protective immunity might be a mechanism leading to parasite persistence. Although acquired immunity limits the clinical impact of infection and provides protection against parasite replication, experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to the aetiology of severe disease. Thus, an appropriate regulatory balance between protective immune responses and immune-mediated pathology is required for a favourable outcome of infection. As natural regulatory T (Treg) cells are identified as an immunosuppressive lineage able to modulate the magnitude of effector responses, several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during malaria. The main findings to date are summarised in this review and the implication for the induction of pathogenesis and immunity to malaria is discussed

    IL-10 from CD4+CD25−Foxp3−CD127− Adaptive Regulatory T Cells Modulates Parasite Clearance and Pathology during Malaria Infection

    Get PDF
    The outcome of malaria infection is determined, in part, by the balance of pro-inflammatory and regulatory immune responses. Failure to develop an effective pro-inflammatory response can lead to unrestricted parasite replication, whilst failure to regulate this response leads to the development of severe immunopathology. IL-10 and TGF-β are known to be important components of the regulatory response, but the cellular source of these cytokines is still unknown. Here we have examined the role of natural and adaptive regulatory T cells in the control of malaria infection and find that classical CD4+CD25hi (and Foxp3+) regulatory T cells do not significantly influence the outcome of infections with the lethal (17XL) strain of Plasmodium yoelii (PyL). In contrast, we find that adaptive IL-10-producing, CD4+ T cells (which are CD25−, Foxp3−, and CD127− and do not produce Th1, Th2, or Th17 associated cytokines) that are generated during both PyL and non-lethal P. yoelii 17X (PyNL) infections are able to down-regulate pro-inflammatory responses and impede parasite clearance. In summary, we have identified a population of induced Foxp3− regulatory (Tr1) T cells, characterised by production of IL-10 and down regulation of IL-7Rα, that modulates the inflammatory response to malaria

    Transcriptional Analysis of Murine Macrophages Infected with Different Toxoplasma Strains Identifies Novel Regulation of Host Signaling Pathways

    Get PDF
    Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.National Institutes of Health (U.S.) (R01-AI080621)New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (Developmental Grant AIO57159)Pew Charitable Trusts (Biomedical Scholars Program)Robert A. Swanson Career Development awardThe Knights Templar Eye Foundation, Inc.Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33)Cleo and Paul Schimmel Foundatio

    Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment

    No full text
    In this study we present the first systematic analysis of the immunity induced by normal Plasmodium yoelii sporozoites in mice. Immunization With sporozoites, which was conducted under chloroquine treatment to minimize the influence of blood stage parasites, induced a strong protection against a subsequent sporozoite and, to a lesser extent, against infected RBC challenges. The protection induced by this immunization protocol proved to be very effective. Induction of this protective immunity depended on the presence of liver stage parasites, as primaquine treatment concurrent with sporozoite immunization abrogated protection. Protection was not found to be mediated by the Abs elicited against pre-erythrocytic and blood stage parasites, as demonstrated by inhibition assays of sporozoite penetration or development in vitro and in vivo assays of sporozoite infectivity or blood stage parasite development. CD4(+) and CD8(+) T cells were, however, responsible for the protection through the induction of IFN-gamma and NO. The Journal of Immunology, 2004, 172: 2487-2495.17242487249

    Hepatocyte growth factor and its receptor are required for malaria infection

    No full text

    Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in the Gambia.

    No full text
    The chromosome 21q22.11 cytokine receptor cluster contains four genes that encode subunits of the receptors for the cytokines interleukin-10 and interferon-alpha, -beta and -gamma that may have a role in malaria pathogenesis. A total of 15 polymorphic markers located within these genes were initially genotyped in 190 controls and 190 severe malaria cases from The Gambia. Two interferon-alpha receptor-1 (IFNAR1) gene SNPs (17470 and L168 V) showed evidence for an association with severe malaria phenotypes and were typed in a larger series of samples comprising 538 severe malaria cases, 338 mild malaria cases and 562 controls. Both the 17470-G/G and L168V-G/G genotypes were associated with protection against severe malaria, in general, and cerebral malaria, in particular (P=0.004 and 0.003, respectively). IFNAR1 diplotypes were then constructed for these two markers using the PHASE software package. The (17470-G L168V-G/17470-G L168V-G) diplotype was found to be associated with a reduced risk of cerebral malaria and the (17470-C L168V-C/17470-G L168V-G) diplotype with an increased risk of cerebral malaria (overall 3 x 2 chi(2)=12.8, d.f.=2, P=0.002 and 3 x 2 chi(2)=15.2, d.f.=2, P=0.0005, respectively). These data suggest a role for the type I interferon pathway in resistance to cerebral malaria
    corecore