21 research outputs found
Initiation of coronal mass ejections by sunspot rotation
We study a filament eruption, two-ribbon flare, and coronal mass ejection (CME) that occurred in NOAA Active Region 10898 on 6 July 2006. The filament was located South of a strong sunspot that dominated the region. In the evolution leading up to the eruption, and for some time after it, a counter-clockwise rotation of the sunspot of about 30 degrees was observed. We suggest that the rotation triggered the eruption by progressively expanding the magnetic field above the filament. To test this scenario, we study the effect of twisting the initially potential field overlying a pre-existing flux-rope, using three-dimensional zero-β MHD simulations. We first consider a relatively simple and symmetric system, and then study a more complex and asymmetric magnetic configuration, whose photospheric-flux distribution and coronal structure are guided by the observations and a potential field extrapolation. In both cases, we find that the twisting leads to the expansion of the overlying field. As a consequence of the progressively reduced magnetic tension, the flux-rope quasi-statically adapts to the changed environmental field, rising slowly. Once the tension is sufficiently reduced, a distinct second phase of evolution occurs where the flux-rope enters an unstable regime characterised by a strong acceleration. Our simulations thus suggest a new mechanism for the triggering of eruptions in the vicinity of rotating sunspots
Validation of Global EUV Wave MHD Simulations and Observational Techniques
Global EUV waves remain a controversial phenomenon more than 20 yr after their discovery by SOHO/EIT. Although consensus is growing in the community that they are most likely large-amplitude waves or shocks, the wide variety of observations and techniques used to identify and analyze them have led to disagreements regarding their physical properties and interpretation. Here, we use a 3D magnetohydrodynamic (MHD) model of the solar corona to simulate an EUV wave event on 2009 February 13 to enable a detailed validation of the various commonly used detection and analysis techniques of global EUV waves. The simulated event exhibits comparable behavior to that of a real EUV wave event, with similar kinematic behavior and plasma parameter evolution. The kinematics of the wave are estimated via visual identification and profile analysis, with both approaches providing comparable results. We find that projection effects can affect the derived kinematics of the wave, due to the variation in fast-mode wave speed with height in the corona. Coronal seismology techniques typically used for estimates of the coronal magnetic field are also tested and found to estimate fast-mode speeds comparable to those of the model. Plasma density and temperature variations of the wave front are also derived using a regularized inversion approach and found to be consistent with observed wave events. These results indicate that global waves are best interpreted as large-amplitude waves and that they can be used to probe the coronal medium using well-defined analysis techniques
Genesis and Impulsive Evolution of the 2017 September 10 Coronal Mass Ejection
The X8.2 event of 2017 September 10 provides unique observations to study the genesis, magnetic morphology,
and impulsive dynamics of a very fast coronal mass ejection (CME). Combining GOES-16/SUVI and SDO/AIA
EUV imagery, we identify a hot (T ≈ 10–15 MK) bright rim around a quickly expanding cavity, embedded inside
a much larger CME shell (T ≈ 1–2 MK). The CME shell develops from a dense set of large AR loops (0.5Rs)
and seamlessly evolves into the CME front observed in LASCO C2. The strong lateral overexpansion of the CME
shell acts as a piston initiating the fast EUV wave. The hot cavity rim is demonstrated to be a manifestation of the
dominantly poloidal flux and frozen-in plasma added to the rising flux rope by magnetic reconnection in the current
sheet beneath. The same structure is later observed as the core of the white-light CME, challenging the traditional
interpretation of the CME three-part morphology. The large amount of added magnetic flux suggested by these
observations explains the extreme accelerations of the radial and lateral expansion of the CME shell and cavity, all
reaching values of 5–10 km s
−2
. The acceleration peaks occur simultaneously with the first RHESSI 100–300 keV
hard X-ray burst of the associated flare, further underlining the importance of the reconnection process for the
impulsive CME evolution. Finally, the much higher radial propagation speed of the flux rope in relation to the
CME shell causes a distinct deformation of the white-light CME front and shock
Comprehensive Characterization of Solar Eruptions with Remote and In-Situ Observations, and Modeling: The Major Solar Events on 4 November 2015
Solar energetic particles (SEPs) are an important product of solar activity. They are connected to solar active regions and flares, coronal mass ejections (CMEs), EUV waves, shocks, Type II and III radio emissions, and X-ray bursts. These phenomena are major probes of the partition of energy in solar eruptions, as well as for the organization, dynamics, and relaxation of coronal and interplanetary magnetic fields. Many of these phenomena cause terrestrial space weather, posing multiple hazards for humans and their technology from space to the ground. Since particular flares, shocks, CMEs, and EUV waves produce SEP events but others do not, since propagation effects from the low corona to 1 AU appear important for some events but not others, and since Type II and III radio emissions and X-ray bursts are sometimes produced by energetic particles leaving these acceleration sites, it is necessary to study the whole system with a multi-frequency and multi-instrument perspective that combines both in-situ and remote observations with detailed modeling of phenomena. This article demonstrates this comprehensive approach and shows its necessity by analyzing a trio of unusual and striking solar eruptions, radio and X-ray bursts, and SEP events that occurred on 4 November 2015. These events show both strong similarities and differences from standard events and each other, despite having very similar interplanetary conditions and only two flare sites and CME genesis regions. They are therefore major targets for further in-depth observational studies, and for testing both existing and new theories and models. We present the complete suite of relevant observations, complement them with initial modeling results for the SEPs and interplanetary magnetic connectivity, and develop a plausible scenario for the eruptions. Perhaps controversially, the SEPs appear to be reasonably modelled and evidence points to significant non-Parker magnetic fields. Based on the very limited modeling available, we identify the aspects that are and are not understood, and we discuss ideas that may lead to improved understanding of the SEP, radio, and space-weather events
Dynamism in the solar core
Recent results of a mixed shell model heated asymmetrically by transient
increases in nuclear burning indicate the transient generation of small hot
spots inside the Sun somewhere between 0.1 and 0.2 solar radii. These hot
bubbles are followed by a nonlinear differential equation system with finite
amplitude non-homologous perturbations which is solved in a solar model. Our
results show the possibility of a direct connection between the dynamic
phenomena of the solar core and the atmospheric activity. Namely, an initial
heating about DQ_0 ~ 10^{31}-10^{37} ergs can be enough for a bubble to reach
the outer convective zone. Our calculations show that a hot bubble can arrive
into subphotospheric regions with DQ_final ~ 10^{28} - 10^{34} ergs with a high
speed, up to 10 km s-1, approaching the local sound speed. We point out that
the developing sonic boom transforms the shock front into accelerated particle
beam injected upwards into the top of loop carried out by the hot bubble above
its forefront traveling from the solar interior. As a result, a new perspective
arises to explain flare energetics. We show that the particle beams generated
by energetic deep-origin hot bubbles in the subphotospheric layers have masses,
energies, and chemical compositions in the observed range of solar
chromospheric and coronal flares. It is shown how the emergence of a hot bubble
into subphotospheric regions offers a natural mechanism that can generate both
the eruption leading to the flare and the observed coronal magnetic topology
for reconnection. We show a list of long-standing problems of solar physics
that our model explains. We present some predictions for observations, some of
which are planned to be realized in the near future.Comment: 44 pages, 20 figure
The European Solar Telescope
The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l’Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems