59 research outputs found

    Comparing open and minimally invasive surgical procedures for oesophagectomy in the treatment of cancer: the ROMIO (Randomised Oesophagectomy: Minimally Invasive or Open) feasibility study and pilot trial

    Get PDF
    Localised oesophageal cancer can be curatively treated with surgery (oesophagectomy) but the procedure is complex with a risk of complications, negative effects on quality of life and a recovery period of 6-9 months. Minimal-access surgery may accelerate recovery.The ROMIO (Randomised Oesophagectomy: Minimally Invasive or Open) study aimed to establish the feasibility of, and methodology for, a definitive trial comparing minimally invasive and open surgery for oesophagectomy. Objectives were to quantify the number of eligible patients in a pilot trial; develop surgical manuals as the basis for quality assurance; standardise pathological processing; establish a method to blind patients to their allocation in the first week post surgery; identify measures of postsurgical outcome of importance to patients and clinicians; and establish the main cost differences between the surgical approaches.Pilot parallel three-arm randomised controlled trial nested within feasibility work.Two UK NHS departments of upper gastrointestinal surgery.Patients aged ≥ 18 years with histopathological evidence of oesophageal or oesophagogastric junctional adenocarcinoma, squamous cell cancer or high-grade dysplasia, referred for oesophagectomy or oesophagectomy following neoadjuvant chemo(radio)therapy.Oesophagectomy, with patients randomised to open surgery, a hybrid open chest and minimally invasive abdomen or totally minimally invasive access.The primary outcome measure for the pilot trial was the number of patients recruited per month, with the main trial considered feasible if at least 2.5 patients per month were recruited.During 21 months of recruitment, 263 patients were assessed for eligibility; of these, 135 (51%) were found to be eligible and 104 (77%) agreed to participate, an average of five patients per month. In total, 41 patients were allocated to open surgery, 43 to the hybrid procedure and 20 to totally minimally invasive surgery. Recruitment is continuing, allowing a seamless transition into the definitive trial. Consequently, the database is unlocked at the time of writing and data presented here are for patients recruited by 31 August 2014. Random allocation achieved a good balance between the arms of the study, which, as a high proportion of patients underwent their allocated surgery (69/79, 87%), ensured a fair comparison between the interventions. Dressing patients with large bandages, covering all possible incisions, was successful in keeping patients blind while pain was assessed during the first week post surgery. Postsurgical length of stay and risk of adverse events were within the typical range for this group of patients, with one death occurring within 30 days among 76 patients. There were good completion rates for the assessment of pain at 6 days post surgery (88%) and of the patient-reported outcomes at 6 weeks post randomisation (74%).Rapid recruitment to the pilot trial and the successful refinement of methodology indicated the feasibility of a definitive trial comparing different approaches to oesophagectomy. Although we have shown a full trial of open compared with minimally invasive oesophagectomy to be feasible, this is necessarily based on our findings from the two clinical centres that we could include in this small preliminary study.Current Controlled Trials ISRCTN59036820.This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 20, No. 48. See the NIHR Journals Library website for further project information

    Global climate forcing of aerosols embodied in international trade

    Get PDF
    International trade separates regions consuming goods and services from regions where goods and related aerosol pollution are produced. Yet the role of trade in aerosol climate forcing attributed to different regions has never been quantified. Here, we contrast the direct radiative forcing of aerosols related to regions’ consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols, including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers such as Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences between consumption- and production-related radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions

    Protein Phosphatase-1α Interacts with and Dephosphorylates Polycystin-1

    Get PDF
    Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme

    Monitoring and Scoring Counter-Diffusion Protein Crystallization Experiments in Capillaries by in situ Dynamic Light Scattering

    Get PDF
    In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS) to monitor counter-diffusion crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a counter-diffusion crystallization experiment of glucose isomerase in capillaries of different diameters (0.1, 0.2 and 0.3 mm) in order to follow the temporal evolution of protein supersaturation. Finally, we have compared DLS data with optical recordings of the progression of the crystallization front and with a simulation model of counter-diffusion in 1D

    Power analysis of single-cell RNA-sequencing experiments

    Get PDF
    Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols.The study was supported by Cancer Research UK grant number C45041/A14953 to A Cvejic and C Labalette, European Research Council project 677501-ZF_Blood to A Cvejic and a core support grant from the Wellcome Trust and MRC to the Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute. The ERC grant ThSWITCH to SA Teichmann (grant no. 260507) and a Lister Institute Research Prize to SA Teichmann. KN Natarajan was supported by the Wellcome Trust Strategic Award “Single cell ge nomics of mouse gastrulation”

    Microfluidics: reframing biological enquiry

    Full text link
    The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science
    corecore